1. Thin lens

A *thin* meniscus lens is made of glass with refractive index $n_g = 1.50$. The front surface has a radius of curvature $r_1 = +5$ cm and the back surface has a radius of curvature $r_2 = +10$ cm. The separation between the two surfaces can be neglected. The lens is used in air ($n_{air} = 1.00$) to image an object placed at a distance $s_0 = 30$ cm in front of the lens.

- (1) (**15 points**) Using the refraction equation $n/s_o + n'/s_i = (n' n)/r$ and treating the lens as two spherical refraction surfaces separated by zero distance, find the location and the linear magnification of the image after the second surface;
- (2) (**10 points**) Find the focal length of this lens in air and use this information to determine the location of the image after refraction at the second surface.

2. Lens combination and thick lens

Two thin lenses, one with $f^{(1)} = +30$ cm and the other with $f^{(2)} = +60$ cm placed in air, are initially pressed together so that the distance between them can be neglected.

- (1) (10 points) Find the focal length of this lens combination.
- (2) (**15 points**) Now separate the two lenses in air by a distance of d = 40 cm and find the ABCD matrix for this new lens combination;
- (3) (**5 points**) Using the ABCD matrix, find the image location of an object placed at $s_0 = 30$ cm in front of the first lens.
- 3. Spherical mirror

A spherical mirror with a radius of curvature R is used to form an image of a *real* object of height y₀ placed at s_0 .

- (1) (10 points) Find linear magnification $m = y_i/y_0$ in terms of *R* and s_0 .
- (2) (**10 points**) If you stand in front of such a mirror at $s_0 = 0.5$ m away, find the value and sign of R such that you will look twice as large as your real size y_0 in front of it.

4. Interference

Young's interference fringes are produced by illuminating a pair of identical, parallel silts that are oriented along the x-axis and separated by a distance of *d* along y-axis. A screen, parallel to x-y plane, is placed at a distance z away from the double slits. Let the illuminating light beam with λ_0 normally incident on the slits (from left side) so that amplitudes and initial phases of the electric fields at the slits are the same.

- (10 points) Write the total intensity I_{total}(y,z) on the screen in terms of the intensity I_{single beam} when one of the slits is blocked and other given parameters when z >> d;
- (2) (**5 points**) If an extra phase $\delta \phi_2$ is added to the second slit (slit₂), what is the total intensity I_{total}(y,z) now?
- (3) (5 points) When $\delta \phi_2$ increases from zero, *explain* how the fringes will move (up or down and how much in terms of $\delta \phi_2$).

(This is how one can use to move fringes or detect $\delta \phi_2$).

