Reading materials:

Homework: (Pedrotti $3^{\text {rd }}$ Edition)

1. 4-11 (Math review)
2. 4-12 (Math review)
3. 4-13 (Math review)
4. 5-4 (Math review)
5. Derive the total phase difference between the reflection of a single monochromatic beam (vacuum wavelength λ_{0}) from two parallel surfaces with n^{\prime} (semi-infinite, incidence angle θ^{\prime}), n (thickness d, refraction angle θ), n^{\prime} (semi-infinite).
6. 7-4
7. 7-11
8. 7-14
9. 7-19
10. 7-20
11. 8-1
12. 8-2
13. 8-3
14. (Due 5/9/16) Landscape Lens: Perform the Introductory Exercise on Landscape Lens using OSLOEDU software. Show YOUR results by (1) displaying the starting "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays; and (2) displaying your optimized "Surface Data" and "Lens Drawing" for paraxial rays and non-paraxial rays. (You may also try the following condition for start: and "draw off").

| SRF | RADIUS | THICKNESS | APERTURE RADIUS | GLASS | SPE |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: |
| OBJ | -- | $1.6000 \mathrm{e}+03$ | 582.352375 | AIR | $*$ |
| 1 | 21.807957 V | 4.000000 | 11.666830 S | BK7 C | |
| 2 | 27.777778 | 12.647480 V | 9.997114 S | AIR | |
| AST | -- | 155.058604 S | 4.341641 AS | AIR | AS |
| IMS | -- | -- | 67.000000 | | $*$ |

