Wave Optics

Optics that derives from Maxwell's equations and the superposition principle for electromagnetic fields.

$$\oint \vec{D} \cdot d\vec{s} = Q_{\vec{s}} \qquad \vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \epsilon_0 \vec{E}$$

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \iint \vec{B} \cdot d\vec{s}$$

$$\oint \vec{B} \cdot d\vec{s} = 0$$

$$\oint \vec{B} \cdot d\vec{s} = M_0 \iint \vec{J} \cdot d\vec{s} + \mu_0 \frac{d}{dt} \iint \vec{D} \cdot d\vec{s}$$

In homogeneous materials, $\hat{D}_s = 0$, $\hat{J}_s = 0$ $\vec{\nabla} \cdot \vec{D} = 0$ $\vec{D} = \vec{E} \cdot \vec{E} + \vec{p} = \vec{E} \cdot \vec{E} + \vec{p} = \vec{E} \cdot \vec{E} \cdot \vec{E}$

$$\nabla \cdot \vec{D} = 0$$

$$\nabla \times \vec{E} = -\frac{d}{dt} \vec{B}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{B} = \mu_0 \frac{d}{dt} \vec{D}$$

Wave equations for É and B

$$\nabla \times (\nabla \times \hat{E}) = \nabla (\nabla \cdot \hat{E}) - \nabla^2 \hat{E}$$

$$\nabla \times (-\frac{d}{dt}\hat{B}) = -\mu_0 \frac{d^2}{dt}\hat{D} = -\mu_0 \epsilon_0 \epsilon \hat{E}$$
From
$$\nabla \cdot \hat{D} = \nabla \cdot (\epsilon_0 \hat{E}) = \epsilon_0 \epsilon_0 \nabla \cdot \hat{E} = 0$$

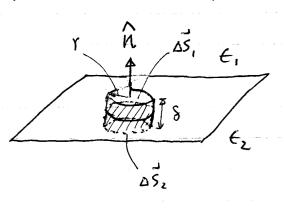
$$\nabla^2 \hat{E} = \epsilon_0 \epsilon_0 \epsilon_0 \frac{d^2}{dt}\hat{E} \qquad (wave equation)$$

$$\nabla \cdot \hat{E} = \epsilon_0 \qquad (Transversality relation)$$

$$\frac{1}{v^2} = \epsilon \epsilon_0 \mu_0 \qquad v^2 = \frac{1}{\epsilon \epsilon_0 \mu_0}$$

$$V = \frac{1}{\int E} \cdot \frac{1}{\int E_0 \mu_0} = \frac{C}{\int E} = \frac{C}{n}$$

M: refractive index
$$N = JE$$


$$\nabla \times (\nabla \times \vec{B}) = \nabla (\nabla \cdot \vec{B}) - \nabla \vec{B}$$

$$\nabla \times (\mu \cdot \frac{d}{dt} \vec{D}) = \epsilon \epsilon_0 \mu_0 \frac{d}{dt} (\nabla \times \vec{\epsilon}) = -\epsilon_0 \epsilon_0 \mu_0 \frac{d^2 \vec{D}}{dt^2 \vec{B}}$$

$$\begin{cases}
\vec{\nabla} \cdot \vec{B} = \epsilon \epsilon_0 \mu_0 \frac{d^2}{dt^2} \vec{B} \\
\vec{\nabla} \cdot \vec{B} = 0
\end{cases}$$

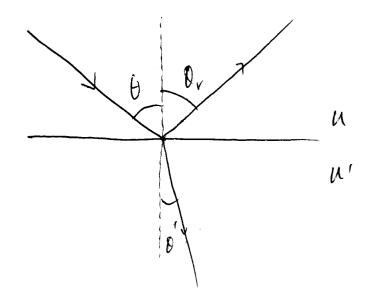
Same speed as É, not surprisingly.

Maxwell's equetions at the boundary of two adjoining accordences media (meterials) (devised from the integral Maxwell's equation)

$$\iint_{S} \vec{p} \cdot d\vec{s} = \pi r^{2} \left(\vec{\epsilon}, \vec{E}, -\vec{\epsilon}_{i} \vec{E}_{i} \right) \cdot \hat{\mu} = 0$$

Similarly,

$$\oint \vec{E} \, d\vec{l} = \int \left(\vec{E}_z - \vec{E}_1 \right) \cdot \hat{t} = 0$$


$$E_{1t} = E_{2t}$$
 $B_{1t} = B_{2t}$

$$\Delta \hat{l}_{1} = -\hat{t} l$$

$$\xi_{1} = -\hat{t} l$$

$$\delta \hat{l}_{2} = \hat{t} l$$

Suell's law of repraction and reflection

$$Q_V = 0$$
 (Veflection)
 $N \sin \theta = u' \sin \theta'$ (Refraction)

These relations, derivable from Huggen's conspruction or fermat's Principle, can be derived from the boundary Conditions

$$\begin{cases} E_{14} = E_{24} \\ B_{14} = B_{24} \end{cases}$$

Or, from Kirchhoff-fresuel Integral generally

Snell's law

list, havele along

(i) Devivation by fermat's Principle.

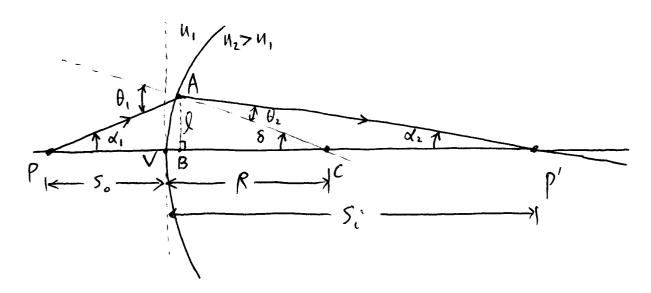
(i) the fraverses from one point to another point by taking the path of the least time or the minimum path length.

$$\begin{array}{c|c}
A & O & O & \\
h_A & & & \\
& \leftarrow \times_A & \rightarrow 1^{\circ} \leftarrow \times_B & \rightarrow \\
& \leftarrow & \swarrow_{AB} & \rightarrow \\
\end{array}$$

 $T = \frac{\chi}{\chi} = \frac{\chi \chi}{\chi}$ "Il" = opticel path us length or path length

The speed of the light in u, is the same we only need to find XA so that Ao + OB is the path of the least distance

$$(T_{X_A} = Q = \overline{OA} + \overline{OB} = \int_{A_A}^{2} + X_A^{2} + \int_{B_B}^{2} + (L - X_A)^{2}$$


$$A = \frac{1}{2} \cdot X_A = 0 = \frac{X_A}{\int_{A_A}^{2} + X_A^{2}} - \frac{(-X_A)^{2}}{\int_{B_B}^{2} + (C - X_A)^{2}}$$

$$X_A = \frac{X_A}{\int_{A_A}^{2} + X_A^{2}} = \frac{(-X_A)^{2}}{\int_{B_B}^{2} + (C - X_A)^{2}} \quad \text{or} \quad \text{Sin } Q_{i} = \text{Sin } Q_{i}$$

$$ET(X_A) = N_{i} \cdot \overline{OA} \quad \text{the Same argument}, \quad [M_{i} \cdot S_{in} \cdot Q_{i}] = M_{2} \cdot S_{in} \cdot Q_{t}$$

$$P_{0} \cdot id$$

Refraction at a spherical surface and formation of image by such a spherical transmitting surface

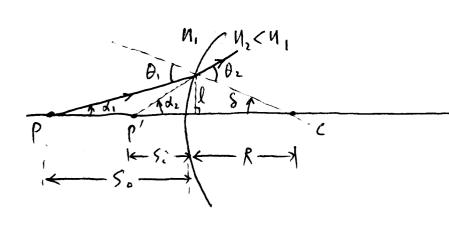
Point-like object (light source) P and the center of curvature of the spherical surface define the axis of such a simple optical system, namely, PC.

When the light come smitted from P forwards the surface is restricted to be small so that ICCR, so, Si in magnitude, all amples such as di, di, S, Di, de, are small. This is the condition of paraxial approximation

By Suell's (aw, U, sind, = U, sind, =) U, d, = U, d.

$$Q_1 = |\alpha_1| + |\beta| \simeq \frac{Q}{S_0} + \frac{Q}{R}, \quad Q_2 = |S| - |\alpha_2| = \frac{Q}{R} - \frac{Q}{S_i}$$

$$\frac{N_1}{S_0} + \frac{N_2}{S_i} = \frac{N_2 - \alpha_1}{R}$$


Since all the light emitted from P within a small come in forward direction (paraxial approximation) converge at P', P' is called the image of the object P.

So: object distance Si: image distance R: vadin, of curvature

Focal points of a spherical refraction surface First focal point F, a special object point whose image is at infinity $f_1 \equiv S_0 \Big|_{S_1 \to +\infty} = \frac{u_1 R}{u_2 - u_1}$

Second focal point f_z : a special image point that corresponds to a point-like object placed at infinity $f_z = S_i \Big|_{S_c \to +\infty} = \frac{y_c R}{y_z - y_c}$

Répaction et a sphévicel surface under other circumstances

$$N, \emptyset, \simeq N_2 \theta_2$$

$$\emptyset_2 = |\alpha_2| + |S| = \frac{Q}{S_1} + \frac{Q}{R}$$

$$\frac{U_1}{S_0} + \frac{U_2}{-S_0} = \frac{U_2 - U_1}{R}$$
(Virtual image)

$$N_1 Q_1 \simeq N_2 Q_2$$

$$Q_1 = |8| - |d_1| = \frac{1}{R} - \frac{1}{S_0}$$

$$Q_2 = |8| - |d_2| = \frac{1}{R} - \frac{1}{S_1}$$

$$\frac{U_1}{S_0} + \frac{U_2}{-S_0} = \frac{U_2 - U_1}{-R}$$

(virtuel image)

$$N, Q, \cong N_{2}Q_{2}$$

$$Q_{1} = |8| - |A_{1}| = \frac{Q}{R} - \frac{Q}{S_{2}}$$

$$Q_{2} = |8| - |A_{2}| = \frac{Q}{R} - \frac{Q_{2}}{S_{1}}$$

$$Q_{3} = |8| - |A_{2}| = \frac{Q}{R} - \frac{Q_{2}}{S_{1}}$$

$$Q_{4} = |8| - |A_{2}| = \frac{Q_{4}}{R} - \frac{Q_{5}}{S_{1}}$$

$$\frac{\mu_1}{-S_0} + \frac{\mu_2}{S_i} = \frac{\mu_2 - \mu_1}{R}$$

Oue equation with sign convention to accommodate all possible situations

$$\frac{U_1}{S_0} + \frac{U_2}{S_i} = \frac{U_2 - U_1}{R}$$

So, Si, and R are allowed to be either positive or negative so that one equation is sufficient.

Sign convention.

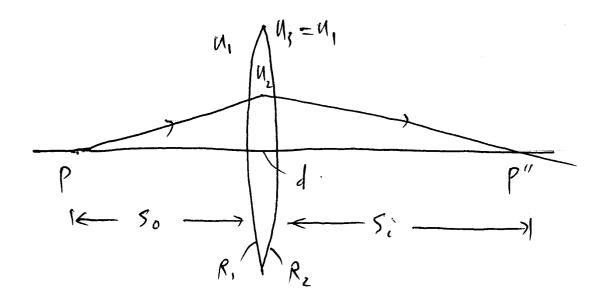
Criven the location of a point-like object P, the Center of the Curvature C, and the intersection of the spherical surface and the system axis (along PC) V:

- (1) If P is in front of V or the surface, So is positive; If P is behind V or the surface, so is desative.
- (e) If (is in front of V or the surface, R is negative;
 If (is believed V or the surface, R is positive.
- (3) Solving U/so + Uz/s: = (Uz-U1)/R for si if si is positive, p'is behind V, real image; if si is negative, p'is in front of V, virtuel image.

Special case Refraction at a flat surface

$$\begin{array}{c|c}
N_1 & N_2 & N_3 & N_4 & N_5 & N_5 \\
\hline
P & P' & Si & N_5 & N_5 & N_5 & N_5 & N_5 & N_5 \\
\hline
Wafar & air & N_5 & N_5 & N_5 & N_5 & N_5 & N_5 \\
\hline
Wafar & Air & N_5 \\
\hline
Wafar & Air & N_5 \\
\hline
Wafar & Air & N_5 &$$

Using the general formular with R = +00,


$$\frac{y_1}{s_0} + \frac{y_2}{s_i} = 0$$

$$S_i = -\left(\frac{N_z}{\alpha_i}\right) S_o$$

For So >0, So <0. Virtual intege, on the same side as the object. If on <u, |5:1< 1501, the image appears closer to the surface.

Example; $U_1 = 1.33$ (water), $U_2 = 1$, $|5|/50 = \frac{1}{1.33}$

Thin (ous equation (d << [R,], [Rz])

Refraction at the First surface,

$$\frac{u_1}{S_0} + \frac{u_2}{S_i'} = \frac{u_2 - u_1}{R_1}$$

To the second surface, the image distance after the first surface is the object distance in magnifude, but always the opposite sisu.

$$S_0' = -S_i'$$

$$\frac{N_c}{S_o'} + \frac{U_1}{S_i} = \frac{U_c - N_c}{R_z}$$

$$\frac{1}{50} + \frac{1}{5i} = \frac{1}{100} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

same sign convention

 (ι)

 \bigcirc

Focal points of a thin leus

First focal point fi : a special object point alose image is fermed at infinity:

$$f_1 = S_0 \bigg|_{S_1 \to +\infty} = \frac{u_1}{u_2 - u_1} \cdot \frac{R_1 \cdot R_2}{R_2 - R_1}$$

Second focal point fr: a special image point that converpents to a point-like object at infinity

$$f_2 \equiv S_i \Big|_{S_0 \to +\infty} = \frac{u_1}{u_2 - u_1} \cdot \frac{R_1 R_2}{R_2 - R_1} = f_1$$

for thin leus

$$f \equiv \frac{u_1}{u_2-u_1} \frac{R_1 R_2}{R_2-R_1} = f_1 = f_2$$

Thin Cens Equation.

$$\frac{1}{50} + \frac{1}{5i} = \frac{1}{f}$$

$$f = \frac{u_1}{N_2 - u_1} \cdot \frac{R_1 R_2}{R_2 - R_1}$$

Cenversing leuses. 5>0 Diversing leuses: f<0

Examples.

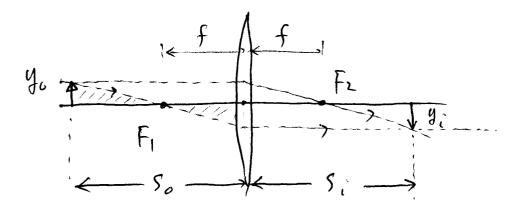
Bi-cenvex lous

$$\int u_1 \nabla u_1 \qquad f = \frac{u_1}{u_2 - u_1} \cdot \frac{R_1 R_2}{R_2 - R_1} > \delta$$

plano-convex leus

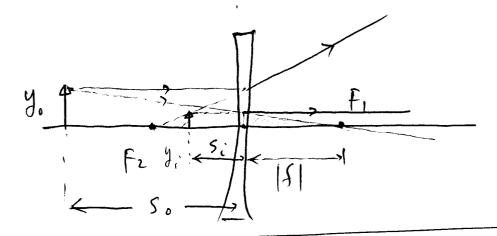
$$R_1 = \frac{u_1}{u_2 - u_1} \cdot \frac{R_1 R_2}{R_2 - R_1}$$

$$= -\frac{u_1 R_2}{u_2 - u_1} > 0$$

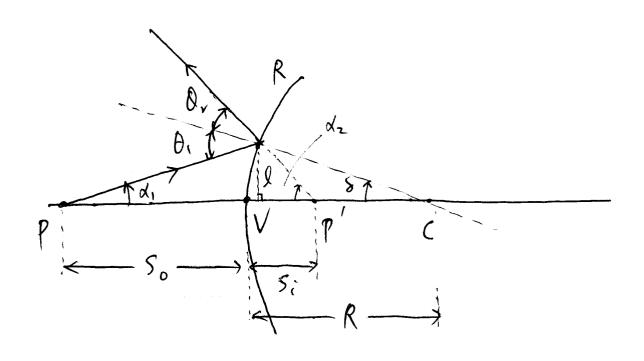

$$B_1'$$
-concave (eus)
$$f = \frac{u_1}{u_2 - u_1} \cdot \frac{R_1 R_2}{R_2 - R_1} < 0$$

Meniscus (ens (positive)

$$f = \frac{u_1}{u_2 - u_1} \cdot \frac{R_2 R_1}{R_2 - R_1} > 0$$


$$R > R_1 > R_2 > 0$$

avallie construction of images of small objects and linear maquification

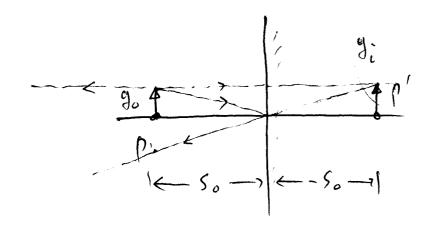

Magaification with sign (inverted or not)

$$M = \frac{y_i}{y_o} = -\frac{f}{s_o - f} = -\frac{s_i}{s_o} < o$$
, inverted image

$$M = \frac{y_i}{y_o} = \frac{-f}{s_o - f} = -\frac{s_i}{s_o} > 0$$
, au-inverted

Reflection from a spherical surface and fermetion of image by such a reflecting scurface

By Suell's reflection (aw,
$$Q_1 = Q_2$$
)
$$Q_1 = |\chi_1| + |S| = \frac{Q}{S_0} + \frac{Q}{R}$$


$$Q_2 = |\chi_2| - S = \frac{Q}{|S_2|} - \frac{Q}{R}$$

$$\frac{1}{S_o} - \frac{1}{|S_i|} = -\frac{2}{R}$$

$$=) \frac{1}{50} + \frac{1}{5i} = -\frac{2}{R}$$

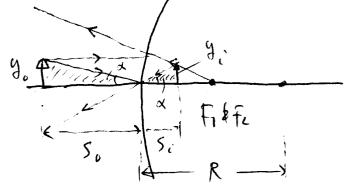
- (i) If Pis in Front of V, 5070
- (2) If c is behind V, R>0
 (3) If Si>0, P is in front of V;
 If Si<0, P'is behind V, virtual

Special case reflection four a flat mirror (R=+0)

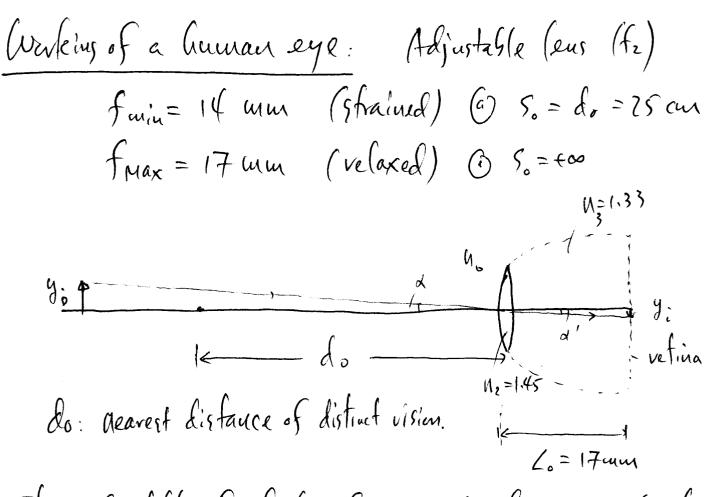
$$M = \frac{g_i}{y_o} = -\frac{S_i}{S_o}$$

Focal points of a spherical winor.

First focal point F1:


$$f_1 \equiv 5$$
, $s_1 = \infty$

Second focal point Fz


$$f_{z} \equiv S_{i} \Big|_{S_{i}=4\omega} = -\frac{R}{Z}$$

So Fit Fz everlap:

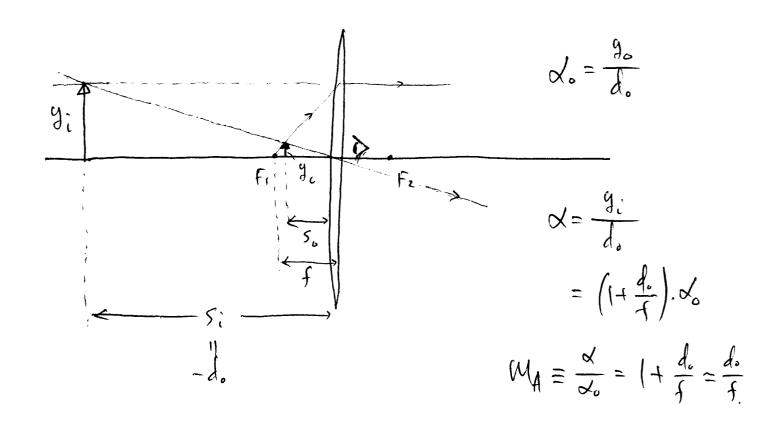
$$M \equiv \frac{g_i}{y_0} = -\frac{s_i}{s_0}$$

Simple optical instruments that Gelp observations with human eyes

The adjustable focal level is such that any object placed between do = 25 cm and infinity can form a sharp image on the plane of vetina. do is the neavest distance of distinct vision.

The linear site of an object J_0 appears to be solely determined $y_i = L_0 \cdot d' = \left(\frac{u_0}{u_3}\right) \cdot L_0 \cdot d$ by the angular span of the object d, regardless of $S_0 \neq$

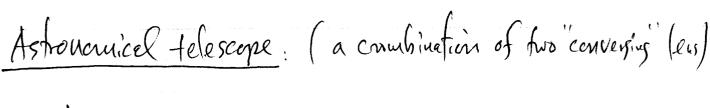
Magnifying glass (converging lens)

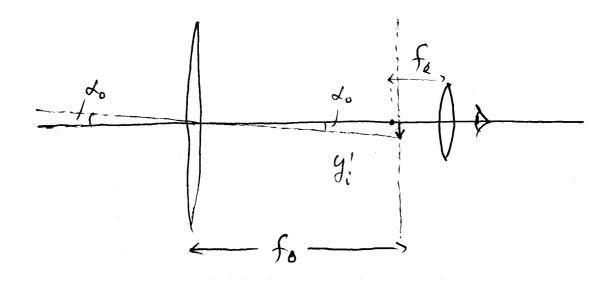

Simplest optical instrument for clewing small objects
When directly viewing a small object of hoiself yo, the
largest angular span is achieved when it is placed
at the nearest distance of distinct vision do

When viewing a same small object through a conversing lous with the focal length of «do, one can form a virtual image of the object by placing to between the first focal point and the lens:

$$S_i = \frac{f.S_o}{S_o - f}$$

By making So > f, Si is pushed to or beyond do. L'et si = - do. The linear magaification

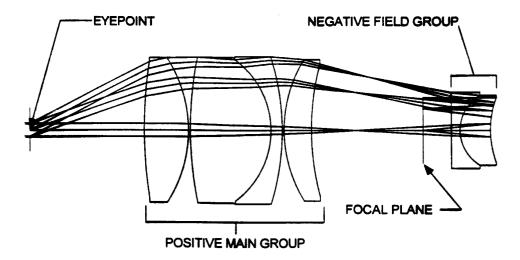

$$M = -\frac{s_i}{s_o} = \frac{-s_i}{\left(\frac{f \cdot s_i}{s_i - f}\right)} = \frac{f - s_i}{f} = 1 + \frac{d_o}{f}$$


Microscope (a combination of two 'conversing' leuses)

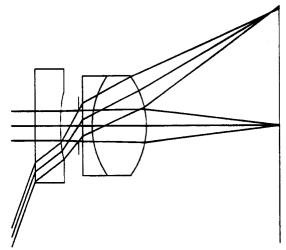
Dustrument for viewing very small objects

A cui croscepe uses a combination of two "converging" leuses. the first leus forms a real, enlarged image; the second leus is used as a magnifying glass.

With a long focal length objective of to, followed by an eye piece (magnifying slass) with te



$$\alpha = \frac{d_o}{f_e} \cdot \frac{y_i'}{d_o} = \left(\frac{f_o}{f_e}\right) \cdot \alpha_o$$


Angular magnification

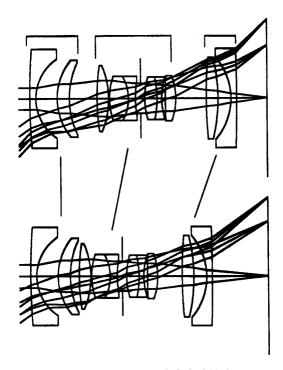

Figure 1. Microscope system discussed by H.D. Taylor, which includes a five element flat field anastigmatic objective and an inside focus wide-angle eyepiece. The eyepiece consists of five groups of lenses, L1 through L5.¹¹

Figure 2. 10-mm, 55° full field-of-view, f/5 inside focus eyepiece. The term "inside focus" refers to the fact that the focal plane is located inside the eyepiece.

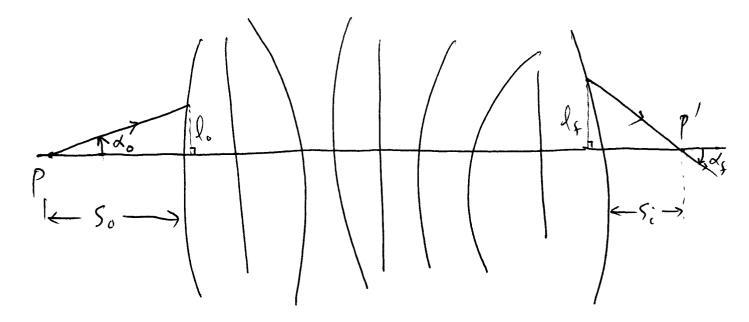


Figure 1. 1.0 mm EFL. 140° full field-of-view, f/4.025, endoscope objective.

Figure 1. 21.4–29.5 mm f/3.6–f/4.6 zoom lens for a compact 35-mm camera.

Matrix formulation for thick leuses and leus systems

$$S_o = \frac{J_o}{d_o}$$
, $S_i^* = -\frac{J_f}{d_f}$

If we know how sly, of is related to slo, of as a result of repraction and translation

$$\begin{pmatrix} J_{+} \\ \zeta_{+} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} J_{0} \\ \zeta_{0} \end{pmatrix}$$

then we can find the image

$$S_i = -\frac{l_s}{\lambda_s} = -\frac{Al_o + Bd_o}{Cl_o + Dd_o} = -\frac{AS_o + B}{CS_o + D}$$

Sign convention for l &d

Let the x-axis be the system axis, and the positive X-direction be the propagating direction of the light

(1) On the upper plane, 270; on the lower plane, 20. (2) 270 if the light vay propagates appeared 20 if the light vay propagates downward.

Refraction at a spherical surface and refraction makix R

$$N_{1} = \frac{1}{2} \frac{1}$$

$$\begin{pmatrix} \lambda_{z} \\ \lambda_{z} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{u_{z}-u_{1}}{u_{z}} \frac{1}{V} & \frac{u_{1}}{u_{z}} \end{pmatrix} \begin{pmatrix} \lambda_{1} \\ \lambda_{1} \end{pmatrix}$$

$$R_{21} \equiv \begin{pmatrix} 1 & 0 \\ -\frac{u_{z}-u_{1}}{u_{z}V} & \frac{u_{1}}{u_{z}} \end{pmatrix} \qquad \text{Vertaction unabox}$$

Translation Marix T(d)

$$\begin{cases} l_1 \\ l_2 \\ l_3 = l_2 + d_2 d \end{cases}$$

$$\begin{cases} l_1 \\ l_3 = l_2 + d_2 d \end{cases}$$

$$\begin{cases} l_1 \\ l_3 = l_2 + d_2 d \end{cases}$$

$$\begin{cases} l_1 \\ l_3 = l_3 + d_2 d \end{cases}$$

$$\begin{cases} l_1 \\ l_3 = l_3 + d_2 d \end{cases}$$

ABCD-Mahix of a leus system

$$\begin{array}{c|c}
N_0 & N_1 & N_2 \\
N_0 & N_N & N_N & N_N & N_N & N_N
\end{array}$$

$$\begin{pmatrix} l_{s} \\ d_{s} \end{pmatrix} = R_{N,N-1} T_{N-1} R_{N-1,N-2} T_{N-2} \cdots R_{21} T_{1} R_{10} \begin{pmatrix} l_{o} \\ d_{o} \end{pmatrix} = \begin{pmatrix} A B \\ C D \end{pmatrix} \begin{pmatrix} l_{o} \\ d_{o} \end{pmatrix}$$

$$\det \begin{vmatrix} AB \\ CD \end{vmatrix} = AD - BC = \det \begin{vmatrix} R_{v,v,s} \end{vmatrix} \cdot \det \begin{vmatrix} T_{v,s} \end{vmatrix} \cdot \cdot \cdot \det \begin{vmatrix} R_{v,s} \end{vmatrix}$$

Since def
$$|R_{j,j-1}| = \frac{n_{j-1}}{n_j}$$
, def $|T_j| = 1$

$$AD-BC = \frac{u_0}{N_N} = \frac{u_0}{u_f}$$

Makix for flick leus & thin leus

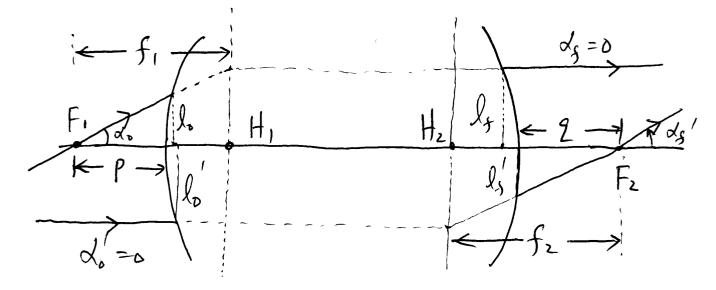
$$\begin{pmatrix} l_f \\ d_g \end{pmatrix} = R_{21} T_1 R_{10} \begin{pmatrix} l_0 \\ d_o \end{pmatrix} = \begin{pmatrix} l_2 - u_1 & u_1 \\ l_2 Y_2 & u_2 \end{pmatrix} \begin{pmatrix} l_1 & d_1 \\ l_1 - u_0 & u_0 \\ l_1 Y_1 & u_1 \end{pmatrix}$$

$$= \left(\frac{1 - \frac{d_1}{r_1} \frac{N_1 - u_0}{h_1}}{N_0 \left(\frac{1}{v_1} - \frac{1}{r_2} \right) - \frac{d_1 \left(u_1 - u_0 \right)^2}{N_1 u_0 v_1 v_2}}{1 + \frac{d_1}{v_2} \frac{u_1 - u_0}{u_1}} \right)$$

$$\begin{pmatrix} \chi_{\xi} \\ \chi_{\xi} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\xi} & 1 \\ -\frac{1}{\xi} & 1 \end{pmatrix} \begin{pmatrix} \chi_{\alpha} \\ \chi_{\alpha} \end{pmatrix}$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
Thin lens
$$\begin{pmatrix} -\frac{1}{4} & 1 \\ -\frac{1}{4} & 1 \end{pmatrix}$$

From the ABCD-Makix


$$S_i = -\frac{A S_0 + B}{C S_0 + D} = -\frac{S_0}{-\frac{S_0}{f} + 1} = -\frac{f S_0}{f - S_0}$$

W

$$\frac{1}{5i} = -\frac{f - S_0}{f \cdot S_0} = -\frac{1}{S_0} + \frac{1}{f}$$

$$\frac{1}{5.} + \frac{1}{5.} = \frac{1}{f}$$

$$\begin{pmatrix} l_s \\ d_s \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} l_o \\ d_o \end{pmatrix} = M \begin{pmatrix} l_o \\ d_o \end{pmatrix}, \quad u_o \neq u_s$$

Fi, fz: system focal points Hi, Hz: principal points

Location of Fi & Fz (relative to two end surfaces)

$$F_z: d_0 = 0 \Rightarrow Al_0 = l_s, cl_0 = d_s \qquad \left[2 = -\frac{l_s}{d_s} = -\frac{A}{c} \right]$$

(same sign convention às so \$5:)

$$P = \frac{l_0}{\alpha_0} = -\frac{p}{c}$$

$$g = -\frac{l_4}{d_5} = -\frac{A}{c}$$

Location of H, & Hz (F, & Fz velative to H., Hz)

$$\int_{1} = \frac{l_{f}}{\alpha_{o}} = \frac{Al_{o} + B\alpha_{o}}{\alpha_{o}} = AP + B = -\frac{AP - BC}{C}$$

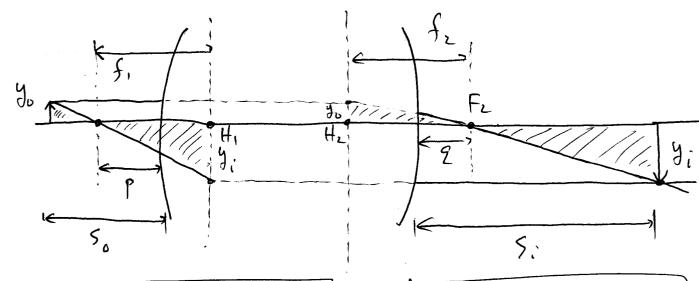
$$= -\frac{\det M}{c} = -\frac{N_{o}/u_{f}}{C}$$

$$\int_{1} = -\frac{N_{o}/u_{f}}{C}$$

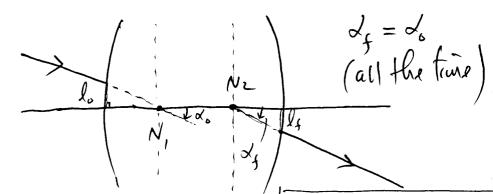
f, >0 if H, is on the visht side of F,; f, <0 if H, is on the left side of F,

(z)
$$f_2 = -\frac{1}{\zeta_1} \frac{l_0'}{\zeta_1'} = -\frac{1}{\zeta}$$
 $f_2 = -\frac{1}{\zeta}$

from if Hz is on the left side of Fz from if Hz is on the vislet side of Fz.


Example: Thin lens with $M = \begin{pmatrix} 1 & 0 \\ -\frac{1}{5} & 1 \end{pmatrix}$ fro (or <0)

$$P = f = f_1$$


$$P = f = f_2$$

$$F_1(\alpha F_2) = F_2(\alpha F_1)$$

Magnification M = 90/90

$$M = \frac{y_i}{y_s} = -\frac{f_1}{s_{s-p}} \qquad M = \frac{y_i}{y_s} = -\frac{s_{i-2}}{f_2}$$

$$N_1$$
: $(l_0+Dd_0=d_0=d_0=D)$

$$l_0/d_0=-\frac{D}{c}+\frac{1}{c}=D-f_2$$
 N

$$N_2:$$
 Alo+ Rdo = ls =) $\left[-\frac{l_s}{d_s} = -\frac{l_s}{d_o} = 9 - f_s \right]$

$$y_0$$

$$F_2$$

$$H_1$$

$$H_2$$

$$d=3 cm$$

$$M = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ +\frac{1}{6} & \frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 3 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{6} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & \frac{3}{2} \\ \frac{1}{3} & 1 \end{pmatrix} = \begin{pmatrix} A B \\ C D \end{pmatrix}$$

$$P = \frac{P}{C} = -3 \text{ cm}$$

$$f_1 = \frac{1}{c} = -3 \text{ am}$$

$$M = -\frac{-3}{6 - (-3)} = \frac{1}{3}$$

Harmonic, plane-ware élechomagnetic fields

$$\vec{E}(\vec{r},t) = \vec{E} \cos \omega \left(t - \frac{\hat{k} \cdot \vec{r}}{v}\right) = \vec{E} \cos \omega \left(t - u\frac{\hat{k}}{c} \cdot \vec{r}\right)$$

$$= \vec{E} \cos \left(\omega t - u\frac{\omega}{c} \hat{k} \cdot \vec{r}\right)$$

$$= \vec{E} \cos \left(\vec{k} \cdot \vec{r} - \omega t\right)$$

$$\vec{k} = u\frac{\omega}{c} \hat{k}$$

$$\vec{B}(\vec{r},t) = \vec{B} \cos \left(\vec{k} \cdot \vec{r} - \omega t\right)$$

$$\omega \text{ ave vector}$$

· Phase of a harmonie plane-wave l.m. field.

$$\phi(\vec{r},t) = \vec{k} \cdot \vec{r} - \omega t + \phi_0$$

B(v,t) = constant defines a phase-front; for a plane-wave e.m. field, the phase-front is a flat plane.

· Wavelength A: shortest distance along & when the wave repeats.

$$\Delta \vec{r} = \hat{k} \cdot \lambda$$
, $\hat{k} \cdot \Delta \vec{r} = k \cdot \lambda = 2\pi$ or $\Delta \phi = 2\pi$

$$k = N \frac{\omega}{c} = \frac{2\pi}{\lambda}$$
I fixed

$$\lambda = \left(\frac{2\pi c}{\omega}\right) \frac{1}{u} = \frac{\lambda_0}{u}$$
 $\lambda_0 : \frac{2\pi c}{\omega}$ vacaum wavelength,

Every flow density vector
$$\vec{S}$$
 and intensity of an e.u.
$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} = \frac{\mu}{\mu_0 c} \vec{E} \times (\vec{k} \times \vec{E}) \alpha \vec{s} (\vec{k} \cdot \vec{r} - \omega t)$$

$$= \frac{\mu}{\mu_0 c} \vec{k} (\vec{E} \cdot \vec{E}) \alpha \vec{s} (\vec{k} \cdot \vec{r} - \omega t) \qquad (\vec{B} = \frac{\mu}{c} \vec{k} \times \vec{E})$$

$$\langle \vec{s} \rangle = \frac{u E^2}{2\mu \cdot c} \hat{k}$$

R is also the direction of the every flow in isotropic material.

Jutensity I:

$$I = |\vec{s}| = \frac{u}{z\mu_0 c} \in Z \longrightarrow \hat{u} |\hat{k}|$$

$$= \frac{\Delta w}{\Delta A} = \frac{Euersy flow}{Avea} \left(\frac{watt}{m^2}\right) \Delta A$$

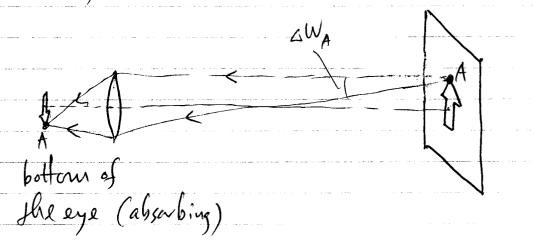
What do are observe of light wish our eyes er a plusto-defector?

Typically (not always, if we want to be exact), a pertion of the e.m. wave is absorbed by a defector or our lyes.

As a result of chscription process, the electric field E(t) = E as (ut - $\Phi(\vec{r})$) drives the electrons in the detector or in the eye to produce a time-varying polaritation

Tolaritation

 $\vec{p}(t) = \vec{\lambda} \left[\vec{\epsilon} \omega(\omega t - \phi(\vec{r})) + \vec{\lambda}'' \vec{\epsilon} \omega \left(\omega t - \phi(\vec{r}) - \frac{7}{2} \right) \right]$


The absorbed nower or its fine-average is what is Observed

$$\left\langle \frac{d\vec{p}}{dt} \cdot \vec{E} \right\rangle = \left\langle -\alpha' \alpha_{s} (\omega t - \phi(\vec{r})) \cdot s \dot{\omega} (\omega t - \phi(\vec{r})) \cdot \omega \right\rangle \left(\vec{J}_{b} = \frac{d\vec{p}}{dt} \right) + \alpha'' \cdot \alpha_{s} (\omega t - \phi(\vec{r})) \cdot \omega \right\rangle E^{2}$$

$$= \omega \cdot \alpha'' \cdot \frac{1}{z} \in^{z}$$

$$\left\langle \frac{d\vec{p}}{dt} \cdot \vec{E}(t) \right\rangle = \frac{\omega}{Z} \alpha'' \vec{E}^{z} = (--) \vec{I}$$

Viewing the light with a seveen or index card or any diffusive surface

The total perver emitted per anit area is propertional to the square of the induced dipole moment or polaritation

$$\vec{p}(t) = (---)\vec{E}(t)$$

$$\Delta W_A = (---)|\vec{p}(t)|^2 = (---)''I$$

I: properficiel le invadiance

SWA: propur fiouel to vadiance

Two-beam interference

$$\vec{E}_{1}(\vec{r},t) = \vec{E}_{1} Cn \left(\omega t - \phi_{1}(\vec{r})\right) \qquad \vec{I}_{1} = \frac{N}{2\mu_{0}c} \vec{E}_{1}^{2}$$

$$\vec{E}_{2}(\vec{r},t) = \vec{E}_{2} Cn \left(\omega t - \phi_{2}(\vec{r})\right) \qquad \vec{I}_{2} = \frac{M}{2\mu_{0}c} \vec{E}_{2}^{2}$$

$$Total defected power density (brightness)$$

$$\langle \vec{E}(\vec{r},t) \cdot \vec{E}(\vec{r},t) \rangle + \langle \vec{E}_{1}(\vec{r},t) \cdot \vec{E}_{2}(\vec{r},t) \rangle$$

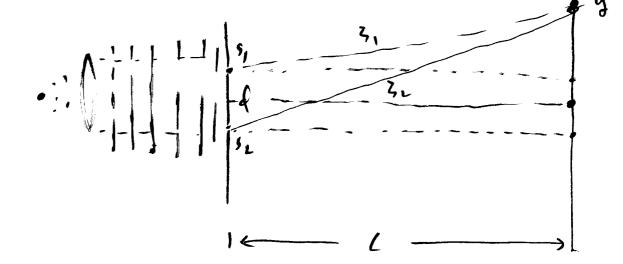
$$= \langle \vec{E}(\vec{r},t) \cdot \vec{E}(\vec{r},t) \rangle + \langle \vec{E}_{2}(\vec{r},t) \cdot \vec{E}_{3}(\vec{r},t) \rangle$$

$$= \langle \vec{E}_{1}(\vec{v},t) \cdot \vec{E}_{1}(\vec{v},t) \rangle + \langle \vec{E}_{2}(\vec{v},t) \cdot \vec{E}_{3}(\vec{v},t) \rangle$$

$$+ 2 \langle \vec{E}_{1}(\vec{v},t) \cdot \vec{E}_{2}(\vec{v},t) \rangle$$

$$= \frac{E_1^2 + E_2^2}{2} + 2E_1 \cdot E_2 \cos(\phi_2(\vec{k}) - \phi_1(\vec{k})) - \frac{1}{2}$$

Multiplying the factor of MMOC.


$$I = \frac{u}{\mu_{oC}} \langle \vec{E}(\vec{r},t) \cdot \vec{E}(\vec{r},t) \rangle$$

$$= I_1 + I_2 + 2 \int I_1 I_2 \hat{E}_1 \cdot \hat{E}_2 \cos \left(\phi_2(\vec{v}) - \phi_3(\vec{v}) \right)$$

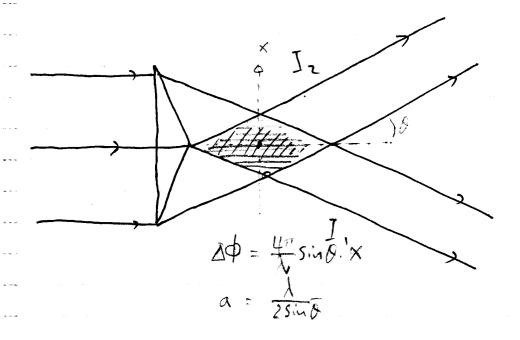
2 JI; I. É; És as (\$\phi_s(\vec{r}) - \phi_s(\vec{r})) is the interference ferm.

Young's inferference: (s(it length Ls2 >> XL)

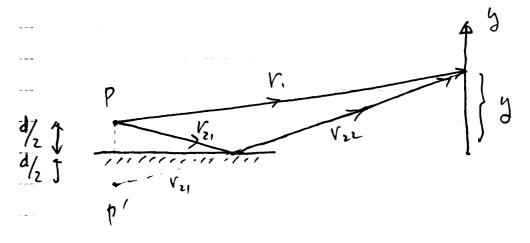
Si, Sz huo
point sources
emitting Extendio
cylindrical
cyaves

I(y) = Imean (1+ cus (9,(4) - 92(4)))

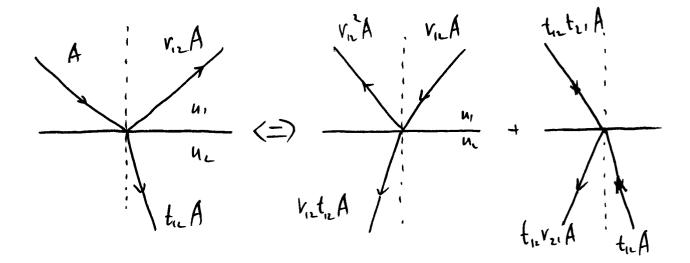
 $\Delta \varphi = \frac{2\pi}{\lambda} n \left(\zeta_{1} - \zeta_{1} \right) = \frac{2\pi}{\lambda} n \left(\sqrt{\left(\zeta_{1} + \left(\gamma + d_{2} \right)^{2} - \left(\gamma + d_{2} \right)^{2} - \left(\gamma + d_{2} \right)^{2}} \right)$


 $= \frac{2\pi}{\lambda} n \cdot \frac{9d}{L}$

((>> y, d)

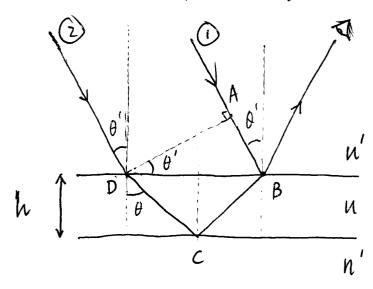

spatial period: 89 | = 14 nd

(published in 1801, done between 1797-1799)


Fresnel's prism

Point-source above a reflecting surface

stokes relations:



By reversing the transmitted and the reflected waves.

$$Y_{11} t_{12} A + t_{12} Y_{21} A = 0$$

(every conservation)

Reflection from two nearly parallel surfaces (Newton's vings, wedge-shafped gap, etc.)

Ray (beam) ():

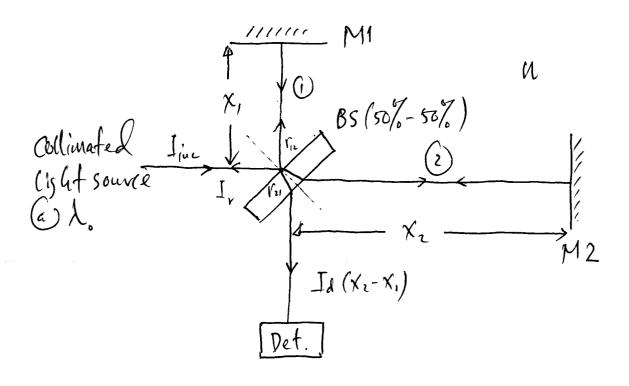
$$\phi_{,}(a+B) = \phi_{,}(a+A) + \frac{2\pi}{\lambda_{o}} n' \overline{AB} = \phi_{,}(a+A) + \frac{2\pi}{\lambda_{o}} n' \sin \theta'. \overline{DB}$$

$$= \phi_{,}(a+A) + \left(\frac{2\pi}{\lambda_{o}}\right) \cdot 2h \cdot \tan \theta \cdot n' \sin \theta'$$

Ray (beam) (2) $\phi_{2}(a+B) = \phi_{2}(a+D) + \frac{2\pi}{\lambda_{0}} \ln(Dc + CB) = \phi_{2}(a+D) + \frac{2\pi}{\lambda_{0}} \cdot 2 \cdot \ln Dc$ $= \phi_{2}(a+D) + \left(\frac{2\pi}{\lambda_{0}}\right) \cdot 2h \cdot \frac{u}{\cos 0}$ $\phi_{2}(a+D) + \left(\frac{2\pi}{\lambda_{0}}\right) \cdot 2h \cdot \frac{u}{\cos 0}$

$$\phi_{2}(at B) - \phi_{1}(at B) = \frac{2\pi}{\lambda_{0}} \cdot 2h \cdot n \cdot con \theta$$

From Stokes' velation, one of the beams experiences a
$$\pi$$
-phase shift when veflection, but not the other one, $\Phi_2(a+B) - \Phi_1(a+B) = \frac{4\pi}{\lambda_0} N \cdot h \cdot as\theta + \pi$


$$I = 2I, \left(1 + as \left(\Phi_2 - \Phi_1\right)\right)_B$$

$$= 2I, \left(1 - as \frac{4\pi h \cdot h}{\lambda_0} \cdot as \theta\right)$$

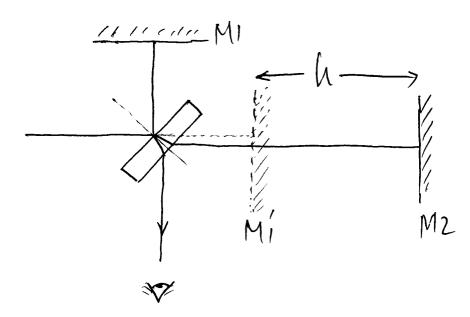
When h = 0, I (h=0) is zero at all navelengths, thus the gap appears dark. As himcreases, depending upon hand d, different wavelengths may assume maximum or minimum, causing the rainbow color (soap bubbles, the gap between two slass slides)

Wedge-shaped sup:
$$I(x) = 2I \left(1 - \alpha_s \frac{4\pi u}{\lambda} h(x) \alpha_s 0 \right)$$
Separation between waxima
$$\frac{4\pi u \alpha_s 0}{\lambda_s} 8h = 2\pi, \quad Sh = \frac{\lambda_s}{2u \alpha_s 0}, \quad \Delta = \frac{sh}{5x} = \frac{\lambda_s}{28x \alpha_s 0} \frac{\lambda_s}{n}$$

Michelson interferometer

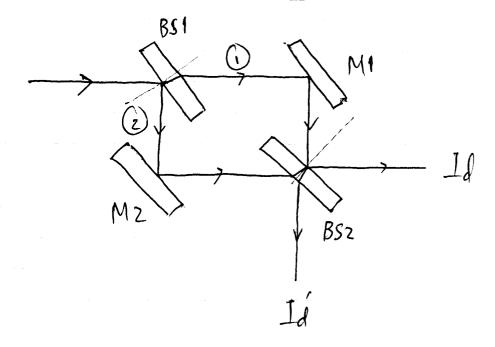
One of the two beams experiences
$$\pi$$
 phase shift after reflet; but not the other one (stokes relations),

$$\phi_z - \phi_1 = \begin{pmatrix} 2\pi \\ \overline{\lambda}_0 \end{pmatrix} \cdot 2 \cdot N \cdot (X_z - X_1) \cdot + \pi \quad (\text{for Id}(X_z - X_1))$$

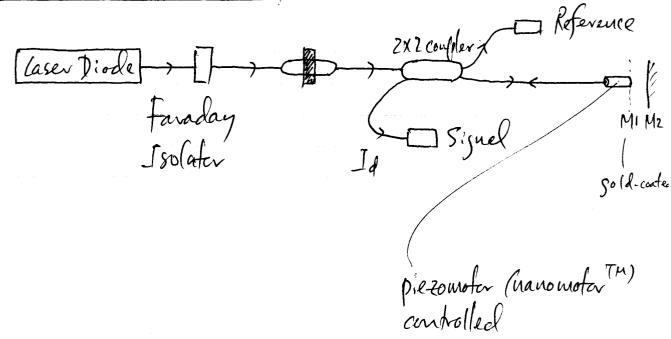

$$I_d(X_1, X_2) = \frac{J_{ine}}{2} \left(1 - \alpha_1 \frac{f \pi u}{\lambda_0} (X_z - X_1) \right)$$

$$I_v(X_1, X_2) = \frac{J_{ine}}{2} \left(1 + \alpha_1 \frac{f \pi u}{\lambda_0} (X_z - X_1) \right)$$

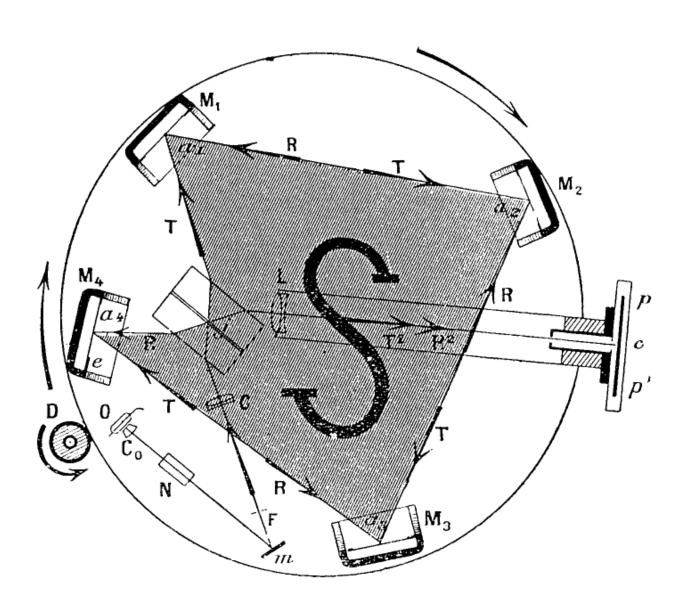
$$I_d + I_v = J_{ine} \quad (\text{enersy conservation})$$

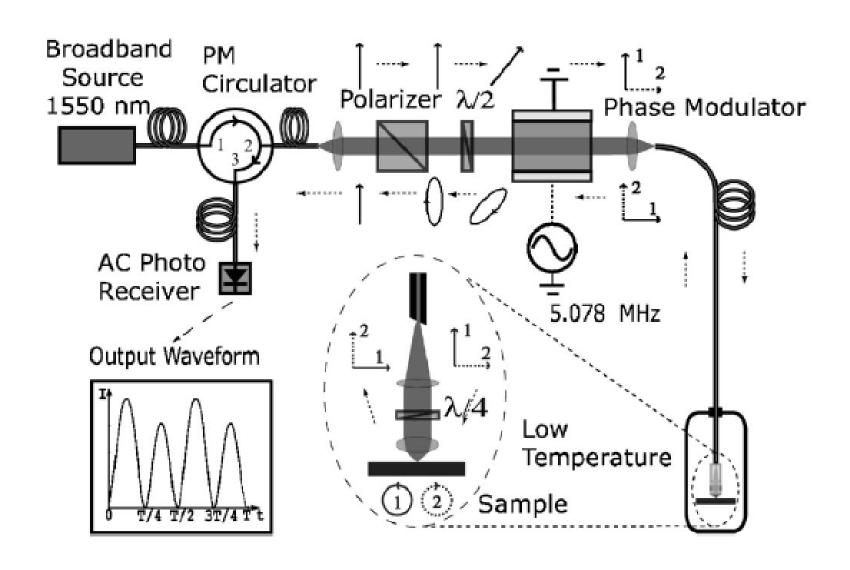

At $X_2 = X_1$, Id $(X_1, X_2 = X_1, \lambda_0) = 0$ at all λ_0 . Using a white light source, when Id = 0, then $X_2 = X_1$. At this point, looking into Michelson interferometer, one sess a black center

Michelsen interfevouréter and reflection from two nearly parallel surfaces



exactly the saure, after reflection or considering the wirror image of M1.


Mach-tender interferometer


Fiber-based interferemeter

Sagnac Interferometer with finite loop-area S

Sagnac Interferometer with zero-loop-area S (Stanford)

Fourier Transferm Optical Spechoscopy (FTIR) — asing Michelson interferometer

X2-X, variable between 1/2 and -1/2

Without either S(X) or R(X), let $Z \equiv Z(X_2 - X_1)$ so that $Z = Z(X_2 - X_1)$ so that $Z = Z(X_2 - X_1)$ so that

$$Id(\tilde{v}, t)d\tilde{v} = g(\tilde{v})d\tilde{v} \frac{1}{z} \cdot \left(1 - \cos(2\pi \tilde{v} \cdot t)\right)$$

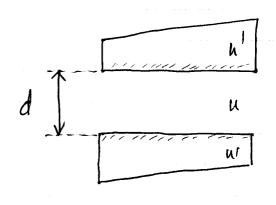
$$Id(\tilde{z}) = \left(Id(\tilde{v}, t)d\tilde{v} = \frac{1}{z} \int g(\tilde{v})d\tilde{v} \left(1 - \cos(2\pi \tilde{v} \cdot t)\right)\right)$$

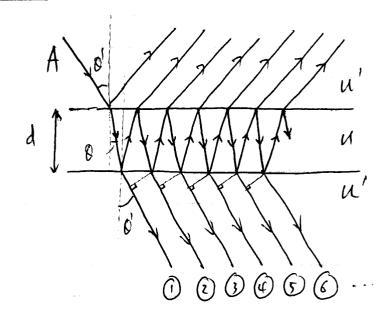
Numerically, in the computer, $S_{o}(\widetilde{\nu}') = \int I_{d}(t) dt \cos 2\pi \widetilde{\nu}' t = c' \int S(\widetilde{\nu}) d\widetilde{\nu} S(\widetilde{\nu}' - \widetilde{\nu}) = c' g(\widetilde{\nu}')$

$$Id(z) = \int_{0}^{(\tau)} Id(z,z) \cdot T(z) dz$$

$$S(\tilde{\nu}') = \int_{-C}^{C} \int_{a}^{(\tau)} (t) dt = C's(\tilde{\nu}') T(\tilde{\nu}')$$

$$T(\tilde{\nu}') = \frac{S(\tilde{\nu}')}{S(\tilde{\nu}')}$$


Jerenting the sample in reflection mode, R(I), and measuring again,


$$Id^{(k)}(z) = \int_{\mathcal{O}} Id(\tilde{\nu}, z) R(\tilde{\nu}) d\tilde{\nu}$$

$$S'(\tilde{z}') = \int_{-L}^{L} dt Id(t) an 2\pi \tilde{z}' t = C'g(\tilde{z}')R(\tilde{z}')$$

$$R(\tilde{\Sigma}') = \frac{S'(\tilde{\Sigma}')}{S_o(\tilde{\Sigma}')}$$

Fabry-Perot Jesterferousefer.

Viewing at the "infinity" With an eye or with a conversing leus of the transmitted rays,

$$E_{t} = E_{t}^{(i)} + E_{t}^{(z)} + E_{t}^{(3)} + \cdots$$

$$= A t_{12} t_{21} + A t_{12} t_{21} V_{21} e^{i\Delta\phi} + A t_{12} t_{21} V_{21} e^{i\Delta\phi} + \cdots$$

$$= A t_{12} t_{21} \left(1 + V_{21} e^{i\Delta\phi} + \left(V_{21} e^{i\Delta\phi} \right)^{2} + \left(V_{21} e^{i\Delta\phi} \right)^{3} + \left(V_{21} e^{i\Delta\phi} \right)^{3} + \left(V_{21} e^{i\Delta\phi} \right)^{3} + \cdots$$

$$\dot{E}_t = \frac{A t_{(2)} t_{21}}{1 - V_{21} e^{i \Delta \phi}}$$

$$\Delta \phi = \frac{4\pi d}{\lambda_0} u \cos \theta$$

From Stokes' relations,
$$t_{(2}t_{2)} + r_{2|}^{2} = 1$$
,

$$\dot{C}_{t} = A \cdot \frac{1 - v_{2|}^{2}}{1 - v_{2|}^{2} e^{i\Delta \Phi}}$$

$$|\dot{C}_{t}|^{2} = |A|^{2} \left| \frac{1 - v_{2|}^{2}}{1 - v_{2|}^{2} e^{i\Delta \Phi}} \right|^{2}$$

$$\dot{C}_{t} = \frac{u^{2}}{1 - v_{2|}^{2} e^{i\Delta \Phi}}$$

$$J_{inc} = \frac{u'}{2\mu_{oC}} |A|^{2}$$

$$J_{T} = \frac{u'}{2\mu_{oC}} |E_{t}|^{2} = J_{inc} \left| \frac{1 - V_{2}}{1 - V_{2}^{2} e^{i\phi\phi}} \right|^{2}$$

Transm; Hance

$$T = \frac{I_T}{J_{iuc}} = \frac{\left| -V_{21}^2 + \frac{1}{1 - V_{21}^2 + \frac{1}{1 - \frac{1}{$$

$$\left| \frac{1 - V_{21}^{2}}{1 - V_{21}^{2} e^{i\Delta\phi}} \right|^{2} = \frac{\left(1 - V_{21}^{2}\right)^{2}}{1 + V_{21}^{4} - 2V_{21}^{2} \cos \Delta\phi} = \frac{\left(1 - V_{21}^{2}\right)^{2} + 2V_{21}^{2}\left(1 - \cos \phi\right)}{\left(1 - V_{21}^{2}\right)^{2} + 2V_{21}^{2}\left(1 - \cos \phi\right)}$$

$$= \frac{1}{1 + \frac{4 V_{21}^{2} \cdot \sin^{2} \Delta\phi_{2}}{\left(1 - V_{21}^{2}\right)^{2}}} = \frac{1}{1 + 9^{2} \cdot \sin^{2} \Delta\phi_{2}}$$

$$T = \frac{1}{1 + 9^2 \sin^2(\delta \phi_2)}, \quad S = \frac{4 V_{21}^2}{(1 - V_{21}^2)^2}$$

When $Y_{21} = R \cong 1$, highly veflective, $9^2 >> 1$, then T is non-zero only when

 $\Delta \phi /_{2} = \frac{2\pi}{\lambda_{0}} du \, cm \, \theta = M \pi$

with a very harrow spectral window (2) or very narrow angular window (00).

By every censervation,

$$R = 1 - T = \frac{s^2 sin^2 (s\phi/2)}{1 + s^2 sin^2 (s\phi/2)}$$

$$\int (\lambda, \theta) = \frac{1}{1 + g^2 sm^2 \left(\frac{2\pi}{\lambda} n d c n \theta\right)}$$

Assume that at to,

hat at
$$\theta_0^{(m)}$$
 = $2m\pi/2 = m\pi$, $\Rightarrow \Delta\theta_m = \frac{\lambda}{2nd \sin\theta_0^{(m)}}$

then $I(\lambda, \theta_0^{(m)}) = 1$. When θ deviates from $\theta_0^{(m)}$ by a small amount,

$$\frac{2\pi}{\lambda}$$
 ud $\cos\theta = \frac{2\pi}{\lambda}$ ud $\cos\theta_0^{(m)} - \frac{2\pi}{\lambda}$ ud $\sin\theta_0^{(m)} \le \theta_0^{(m)}$

The angular spread of a FP at λ is defined such that $I(\lambda, \theta_0^{(n)} + 8\theta^{(n)}) = \frac{1}{2}$:

$$S\theta_{\lambda_{o}}^{(m)} = \frac{\lambda_{o}}{2\pi \operatorname{ndg Sim} \theta_{o}^{(m)}} \Rightarrow \frac{\Delta Q_{m}}{\pi g} \ll \Delta Q_{m} \quad (2\pi g)$$

$$\frac{2\pi}{\lambda_{o}^{+}\Delta\lambda} ndcos(\delta_{o}^{(m)} - \Delta\delta_{o}^{(m)}) = 10\pi$$

(3) Spechal vesolution, (81/12 or 81/1). (Rayleigh Critarion)
Assume that at
$$\theta_0^{(m)}$$
, λ_0 satisfies

$$\frac{2\pi}{\lambda_o}$$
 und as $\theta_o^{(m)} = \mu \pi$, $\int (\lambda_o, \theta_o^{(m)}) = 1$.

then when I deviates from to, the waximm angle deviates from $\theta_0^{(m)}$ accordingly. This is defermined by

$$\frac{27}{\lambda_o} \operatorname{nd} \operatorname{cas} \theta_o^{(m)} = \frac{27}{\lambda_o + 8\lambda} \operatorname{nd} \operatorname{cas} \left[\theta_o^{(m)} \times 8\theta\right]$$

$$\Rightarrow \frac{8\lambda}{\lambda_o^2} = \frac{1}{\lambda_o} \frac{\sin \theta_o^{(m)}}{\cos \theta_o^{(m)}} \cdot 8\theta$$

The spectral resolution is defined by requiring the maxim for lot 8h to be no less then 80 (m)

$$\frac{\delta\lambda}{\lambda_o^2} = \frac{\sin\theta_o^{(n)}}{\lambda_o \cos\theta_o^{(n)}} \delta\theta^{(n)} = \frac{1}{2\pi ndg \cos\theta_o^{(n)}}$$

$$\frac{S\lambda}{\lambda_0} = \frac{S\widetilde{D}}{\widetilde{\Sigma}} = \frac{\lambda_0}{2\pi nd \cdot \varsigma. \ \alpha_0 G^{(-)}} = \frac{1}{mN} : \lambda_0 = 6.3 \times 10^5 \text{ cm}$$

$$N = 1.5 \quad V_{12} = 0.9$$

$$d = 1 \text{ mm} = 0.1 \text{ cm}$$
 $\lambda_0 = 6.3 \times 10^5 \text{ cm}$
 $N = 1.5$, $V_{12}^2 = 0.9$
 $\theta_0^{(m)} \approx 0$, $\beta = 20$

$$\frac{\delta\lambda}{\lambda} = \frac{10^{-3}}{10^{-3}}$$

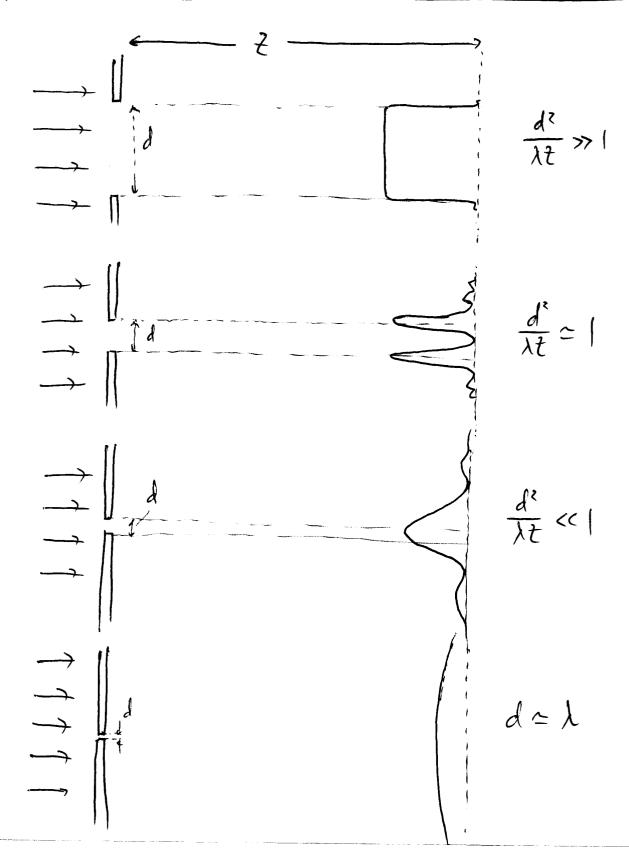
Diffraction Theory (including gennetic opties)

* Christiaan Huggen's (Traite de la Cumiere, 1678)

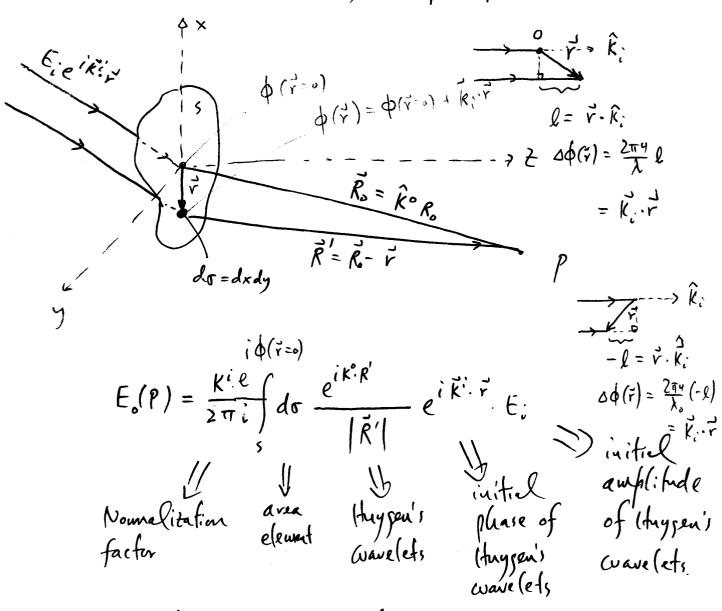
* Augustin Fresuel (1819 Grand Prix Prize for diffraction
theory)

Franchofer (1823, diffraction theory)

Airy (1835, diffraction from a circular aperture)


Maxwell (1864 and 1873, Maxwell's equations)

Gustar Kirchoff (1857 -, Kirchhoff Jutegral from
Maxwell's equations)


Haysens-Fresuel Principle

The wave-front of a propagating (ight wave at any instant conforms to the envelope of spherical wavelets at a prier instant.
The amplifule of the wave front at any given point equals the super position of the amplifules of all the secondary spherical wavelets at that point.

Cross over from glemetic optics to diffraction optics

Mathematical vesult of Huysen's principle.

Including a fransvission function T(r):

$$E_{o}(P) = \frac{K^{i}}{2\pi i} \left\{ d\sigma \frac{e^{iK^{o}R'}}{R'} e^{iK^{i}\vec{r}} T(\vec{r}) E_{i} e^{i\phi(\vec{r})} \right\}$$

Kirchhoff - Fresnel Integral: (Fresnel, 1819, confirmed by
Posson)

(Principles of Optics, Max Born and Emil Wolf,
p. 375-380, Eq. (17))

$$E(R_{\bullet}) = E_{inc} \frac{-i K}{2\pi} \cdot \int_{S} d\sigma e^{i K_{inc} \vec{r}} \frac{e^{i KR'}}{R'} \cdot \frac{K_{t}^{i} + K_{t}^{o}}{2K}$$

Let $\vec{R}_0 = (x_0, y_0, \pm_0)$, $\vec{r} = (x, y, 0)$ We consider the situation when $\pm_0 > 7$ h and the smallest dimension on 5 is larger compared to λ .

Geometric optics (imit.

 $\phi(\vec{v}) = KR' = \frac{2\pi}{\lambda} \int_{-\infty}^{\infty} \frac{1}{(x-x_0)^2 + (y-y_0)^2}$

$$\phi(\vec{v}) \simeq \frac{2\pi}{\lambda} \cdot t_0 + \frac{2\pi}{\lambda} \cdot \frac{(x-x_0)^2 + (y-y_0)^2}{2t_0}$$

and the range of the integral is determined by Ftoh (12, Consequently,

$$E(R_o) = E_{inc} \frac{-iK}{2\pi i} \frac{1}{z_o} e^{iKz_o} \iint dxdy e^{i\frac{K}{2z_o} \left[(x-x_o)^2 + (y-y_o)^2 \right]}$$

Since the dimension of S is large compared to 1, if it is also much larger than Into (Geometric optics (imit) then we can safely let the limit of the integral go to infinity:

Changing variables to $x'=\int \frac{K}{2t_0}(x-x_0)$, $y'=\int \frac{K}{2t_0}(y-y_0)$.

$$\int_{0}^{+5} dx' e^{ix'^{2}} = 2 \int_{0}^{+\infty} dx' e^{ix'^{2}} = \int_{\overline{\Pi}} e^{i\frac{\pi}{4}}$$

: E(Ro) = Eince likto, just as you expect.

If (xo,y) is cutside 5 by more than Tato, then the strong cancellation in integration over (x,y) will result in a much reduced intensity at (xo, yo, to). Thus we see shadow.

Single long slit

(Greenefric Canit along X-direction)

$$\phi(\vec{v}) = \frac{2\pi}{\lambda} \int_{z_{i}}^{z_{i}} + (y_{i} - y_{i})^{2} + (x_{i} + x_{i})^{2}$$

$$= \frac{2\pi}{\lambda} \int_{z_{i}}^{z_{i}} + (y_{i} - y_{i})^{2} + \frac{2\pi}{\lambda} \cdot \frac{(x_{i} - x_{i})^{2}}{2 \int_{z_{i}}^{z_{i}} + (y_{i} - y_{i})^{2}}$$

$$\vec{E}(R = \int_{z_{i}}^{z_{i}} + y_{i}^{2}) = \frac{\vec{E}_{inc}}{\lambda} \int_{z_{i}}^{z_{i}} \frac{d^{2}z_{i}}{dy} \cdot \frac{\vec{E}_{inc}}{\frac{2z_{i}}{\lambda} + (y_{i} - y_{i})^{2}}$$

$$= \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \int_{x_{i}}^{dy} \cdot \frac{(x_{i} - x_{i})^{2}}{(z_{i}^{2} + (y_{i} - y_{i})^{2})^{2} + (y_{i} - y_{i})^{2}}$$

$$= \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \int_{x_{i}}^{dy} \cdot \frac{\vec{E}_{i} \cdot \vec{E}_{inc} \cdot \vec{E}_{inc}}{(z_{i}^{2} + (y_{i} - y_{i})^{2})^{2} + (y_{i} - y_{i})^{2}} \cdot \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \int_{x_{i}}^{dy} \cdot \frac{\vec{E}_{i} \cdot \vec{E}_{inc} \cdot \vec{E}_{inc}}{(z_{i}^{2} + (y_{i} - y_{i})^{2})^{2} + (y_{i} - y_{i})^{2}} \cdot \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \int_{x_{i}}^{dy} \cdot \frac{\vec{E}_{i} \cdot \vec{E}_{inc}}{(z_{i}^{2} + (y_{i} - y_{i})^{2})^{2} + (y_{i} - y_{i})^{2}} \cdot \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \frac$$

Single long slit

(Greenefric Canit along X-direction)

$$\phi(\vec{v}) = \frac{2\pi}{\lambda} \int_{z_{i}}^{z_{i}} + (y_{i} - y_{i})^{2} + (x_{i} + x_{i})^{2}$$

$$= \frac{2\pi}{\lambda} \int_{z_{i}}^{z_{i}} + (y_{i} - y_{i})^{2} + \frac{2\pi}{\lambda} \cdot \frac{(x_{i} - x_{i})^{2}}{2 \int_{z_{i}}^{z_{i}} + (y_{i} - y_{i})^{2}}$$

$$\vec{E}(R = \int_{z_{i}}^{z_{i}} + y_{i}^{2}) = \frac{\vec{E}_{inc}}{\lambda} \int_{z_{i}}^{z_{i}} \frac{d^{2}z_{i}}{dy} \cdot \frac{\vec{E}_{inc}}{\frac{2z_{i}}{\lambda} + (y_{i} - y_{i})^{2}}$$

$$= \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \int_{x_{i}}^{dy} \cdot \frac{(x_{i} - x_{i})^{2}}{(z_{i}^{2} + (y_{i} - y_{i})^{2})^{2} + (y_{i} - y_{i})^{2}}$$

$$= \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \int_{x_{i}}^{dy} \cdot \frac{\vec{E}_{i} \cdot \vec{E}_{inc} \cdot \vec{E}_{inc}}{(z_{i}^{2} + (y_{i} - y_{i})^{2})^{2} + (y_{i} - y_{i})^{2}} \cdot \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \int_{x_{i}}^{dy} \cdot \frac{\vec{E}_{i} \cdot \vec{E}_{inc} \cdot \vec{E}_{inc}}{(z_{i}^{2} + (y_{i} - y_{i})^{2})^{2} + (y_{i} - y_{i})^{2}} \cdot \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \int_{x_{i}}^{dy} \cdot \frac{\vec{E}_{i} \cdot \vec{E}_{inc}}{(z_{i}^{2} + (y_{i} - y_{i})^{2})^{2} + (y_{i} - y_{i})^{2}} \cdot \frac{\vec{E}_{inc}}{\sqrt{\lambda}} \cdot \frac$$

Normally illuminated long slit

$$E(\vec{R}_{0}) = \frac{\pm inc}{\sqrt{\lambda R_{0}}} \left(\frac{dy'}{\lambda} e^{i \left(\frac{2\pi u}{\lambda} \right) \cdot |\vec{R}_{0} - \vec{r}|}{\sqrt{\lambda R_{0}}} \right) R_{0} = |\vec{R}_{0}| = |\vec{R}_$$

$$\phi(z, y, y') \cong \frac{2\pi u}{\lambda} R_{\circ} - \left(\frac{2\pi u}{\lambda}\right) \sin \theta \cdot y' + \left(\frac{2\pi u}{\lambda}\right) \sin \theta \cdot \frac{y'^{2}}{R_{\circ}}$$

Franchofer diffraction Vanit.

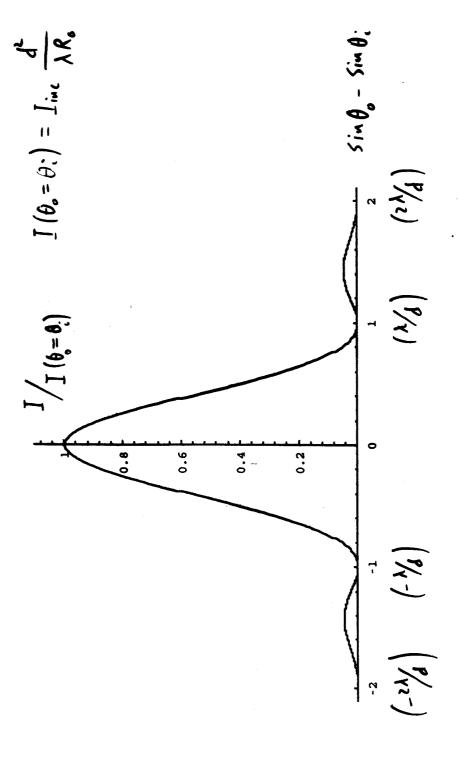
$$\frac{d^{2}}{\lambda R_{o}} \ll 1, \qquad \left(\frac{2\pi u}{\lambda}\right) \sin^{2}\theta \frac{y'^{2}}{R_{o}} \ll 2\pi$$

$$\phi(\xi, y, y' = o)$$

$$\phi(\xi, y, y') \cong \frac{2\pi u}{\lambda} R_{o} - \left(\frac{2\pi y}{\lambda}\right) \sin^{2}\theta y'' \left(\frac{2\pi u}{\lambda}\right).$$

$$E(\vec{R}_0) = E(Q) = \frac{E_{ini}}{J\lambda R_0} e^{i\left(\frac{2\pi u}{\lambda}\right)R_0} \int_{-d_2}^{d_2} e^{-i\left(\frac{2\pi u}{\lambda}\right)SinQ_0} y'$$

$$= \frac{E_{ini}d}{J\lambda R_{o}}e^{i\left(\frac{2\pi y}{\lambda}\right)\cdot R_{o}} \cdot \frac{e^{-i\left(\frac{\pi y}{\lambda}\right)d\sin\theta}e^{-i\left(\frac{\pi y}{\lambda}\right)d\sin\theta}}{-i\left(\frac{2\pi y}{\lambda}\right)\sin\theta\cdot d}$$


$$= \frac{\lim_{n \to \infty} e^{i\left(\frac{2\pi n}{\lambda}\right)} R_{o}}{\int \lambda R_{o}} \frac{\lim_{n \to \infty} \left(\frac{\pi dn}{\lambda} \sin \theta\right)}{\left(\frac{\pi dn}{\lambda} \sin \theta\right)}$$

$$I(R_0) = I_{int} \cdot \left(\frac{d^2}{\chi R_0}\right) \frac{\sin^2\left(\frac{\pi d^4}{\chi} \sin \theta\right)}{\left(\frac{\pi d^4}{\chi} \sin \theta\right)^2}$$

If the slit is obliquely illuminated, at an angle d:

$$l = y' \sin \theta$$
 $l = y' \sin \theta$
 $l = y' \sin \theta$

Single-5(: 4 function:

Angular spread $\Delta\theta = \frac{\lambda}{4}$

$$I(\theta) = \int_{\text{max}} \frac{2\int_{0}^{2\pi} 4\sin\theta}{(2\pi A\sin\theta)} \qquad \Delta\theta = 2\theta = \frac{2U41}{d} = \frac{1.72\lambda}{a}$$

$$Examples: (i) Smell aperture:
$$\lambda = 6.33 \times 10^{5} \text{ cm} \quad (He-Ne (aser)) \quad \times = 1.72\pi$$

$$\lambda = 10 \, \mu \text{m} = 10^{5} \text{ cm} = 20$$

$$\Delta\theta = \frac{1}{4} = 1.3 \times 10^{5} \text{ rad} = 7.8^{\circ}$$

$$\Delta\theta = \frac{1}{4} = 1.3 \times 10^{5} \text{ rad} = 7.8^{\circ}$$

$$\Delta\theta = \frac{1}{4} = 1.3 \times 10^{5} \text{ rad} = 70 \, \mu \text{m}, \text{ the}$$

$$\Delta\theta = \frac{1}{4} = \frac{1}{4} = 1.3 \times 10^{5} \text{ rad} = 70 \, \mu \text{m}, \text{ the}$$

$$\Delta\theta = \frac{1}{4} = \frac{1}{4} = 1.3 \times 10^{5} \text{ rad} = \frac{1}{4} = \frac{1}{4$$$$

Spatial vesolution of a microscope and a telescope.

For a telescope with entrance aper have D and focal length for the minimum vosilved angle separation SX will have to be

 $8\partial_{\gamma_2} = \frac{\lambda}{D} = 8\alpha$

For a 70-m telescope, we have for a visible optical wave $\lambda = 0.5 \mu m$,

 $SX = \frac{\lambda}{D} = 5 \times 10^{-8} \text{ Vadians}$

For a wieroscepe with enhance aperture D and focal length for, the linear resolution in the object plane 840 is related to its image 84i in the first image plane at L = 200mm away. We can flink of the unicroscope objective as a combination of two (enses (perfect lenses) so that the first lens forms the image of an object point at infinity, and the second lens brings the image at the infinity to L away from itself. Now because of the frameworker

diffraction, flie 'Collimated' beaun beaunes a set of 'Collimated' beaun-lets fliet spread over an angle of

80/2 = 1.221 As a result, after the 'second' (lus, the image of an object perior becures Garred into a discalif a diameter 8r = 80y, L = 1.221 This wears that on the image place, the Mucan spatial resolution 89: = 81 = 1.55y Nouthe patral resolution in the object plane $89_0 = 89_i \left(\frac{S_0}{S_i}\right) = 89_i \frac{f_0}{L} = 1.22 \cdot \frac{f_0}{D} \cdot \lambda$ 1 89 = (1.22 X). 5 T N.A = anuerial apperture

= Usind

Single long reflecting strip

$$l_{i} = y \sin \theta_{i}$$

$$l_{i} = y \cos \theta_{i}$$

$$l_{i$$

with respect to the surface normal of the surface!!!

Referenced to Ray \$10,

each successive vay

has an additional

phase $\Delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_i - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_o - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_o - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_o - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_o - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_o - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_o - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_o - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta_o - \sin \theta_o \right)$ $\delta \phi = \frac{2\pi}{\lambda} a \left(\sin \theta$

$$= \frac{Y \cdot E_{inc} \cdot d}{\int \lambda R_{i}^{(0)}} e^{i \phi^{(0)}} \frac{\sin \left(\frac{\pi}{\lambda} d(\sin \theta_{i} - \sin \theta_{i})\right)}{\frac{\pi}{\lambda} d(\sin \theta_{i} - \sin \theta_{i})} \sum_{n=0}^{n-1} e^{i \Delta \phi^{(n)}}$$

 $\sum_{n=0}^{N-1} e^{i \Delta \phi^{(n)}} = \sum_{n=0}^{N-1} \left(e^{i \frac{2\pi}{\lambda} \alpha \left(\sin \theta_i - \sin \theta_i \right)} \right)^n = e^{i \frac{N-1}{2} \Delta \phi} \cdot \frac{\sin \left(\frac{N}{\lambda} \Delta \phi \right)}{\sin \left(\Delta \phi /_2 \right)}$

$$I(\theta_{\delta}) = I_{inc}(v)^{2} \cdot \frac{N^{2}d^{2}}{\lambda R_{0}^{(0)}} \cdot \left(S_{ins}^{(0)}[e-s]^{i} + f_{inc}f_{in}\right) \left(\frac{1}{\lambda} d(S_{ind}^{(0)} - S_{ind}^{(0)})\right)$$

$$S_{ins}^{(0)}[e-s]^{i} + f_{inc}f_{in} = \frac{S_{in}^{(0)}\left(\frac{\pi}{\lambda} d(S_{ind}^{(0)} - S_{ind}^{(0)})\right)^{2}}{\left(\frac{\pi}{\lambda} d(S_{ind}^{(0)} - S_{ind}^{(0)})\right)^{2}}$$

$$Multiple-s]^{i} + f_{inc}f_{in} = \frac{S_{in}^{(0)}\left(\frac{\pi}{\lambda} Na(S_{ind}^{(0)} - S_{ind}^{(0)})\right)^{2}}{\left(NS_{in}^{(0)}\left(\frac{\pi}{\lambda} a(S_{ind}^{(0)} - S_{ind}^{(0)})\right)\right)^{2}}$$

Multiple-slif function has infinite maxima when $\frac{\pi}{\lambda}a\left(\sin\theta_{i}-\sin\theta_{s}\right)=m\pi$, $m=0,\pm1,\pm2$, $\sin\theta_{s}=\sin\theta_{s}-m\frac{\lambda}{\lambda}$, $m=0,\pm1,\pm2$,

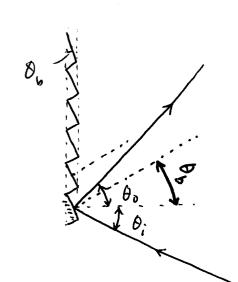
Example: a=2d, N=3 (In general, MalAconfica plot)

NIGHTS sub

The sub

Augular width.

Spechal vesolution:


Let $\theta_m(\lambda + o\lambda) = \theta_m + \Delta\theta_m$, i.e., λ' peaks at an anyle θ' where λ has its first minimum: $(\lambda' = \lambda + o\lambda)$ NITA: $\frac{1}{\lambda + o\lambda}$ Sin($\theta_m + o\theta_m$) = NMTT $\frac{1}{\lambda + o\lambda}$ Sin($\theta_m + o\theta_m$) = λ' $\frac{1}{\lambda + o\lambda}$

$$\frac{\delta \lambda}{\lambda} \sin \theta_{m} = \operatorname{curthin} \delta \theta_{m} \Rightarrow \left[\frac{\delta \lambda}{\lambda} = \frac{\lambda}{Na \sin \theta_{m}} + \frac{1}{Nam} \right]$$

Blated reflection grating

Shiffing the maximum of the single-slit function to the first-order diffraction (m=±1) angles of the multiple slit function:

=) improve the grating efficiency

For single slit function, the real incidence angle Di' = Di + Ds; the real reflection angle

 $Q_{0}' = Q_{0} - Q_{6}$

 $I(\theta_0) = I sinsle, wax. \frac{Sin^2 \left(\frac{\pi}{\lambda} d \left(Sin(\theta_0 - \theta_0) - Sin(\theta_1 + \theta_0)\right)\right)}{\left(\frac{\pi}{\lambda} d \left(Sin(\theta_0 - \theta_0) - Sin(\theta_1 + \theta_0)\right)\right)^2} \left(\text{mult.ple}\right)$

New Single slit function peaks at $0_0 = 0$; + 206. Multiple-slit first-order diffraction peaks at $Sin O_0 = Sin O_1 + \frac{\lambda}{a}$ (multiple slit) $O_0 = O_1 + 2O_0$ (Single slit)

Relationship between
$$\vec{k}$$
, \vec{E} , \vec{E} and \vec{B}
From $\vec{\nabla}^2 \vec{E} = \vec{E} + \vec{E}_0 \mu_0 \frac{d^2 \vec{E}}{dt^2} \vec{E}$
 $-\vec{k} \cdot \vec{k} = -\vec{E} + \vec{E}_0 \mu_0 \omega^2$
 $\vec{k} \cdot \vec{k} = (\vec{k})^2 = \vec{E} + \frac{\vec{\omega}^2}{c^2}$
 $\vec{E} = \vec{E} + \frac{\vec{\omega}}{c} = \vec{E} + \frac{\vec{\omega}^2}{c} = \vec{E} + \frac{\vec{E}^2}{c} = \vec{E} + \vec{E} + \vec{E} + \vec{E}$

$$\hat{k} = \hat{k} N \frac{\omega}{c} = \hat{k} \cdot N \cdot \frac{27}{\lambda_0}$$

From
$$0 \times \hat{E} = -\frac{d}{dt} \vec{B}$$

$$\nabla \times \vec{\epsilon} = -\vec{k} \times \vec{\epsilon} \quad \text{Sin} \left(\vec{k} \cdot \vec{r} - \alpha t \right)$$

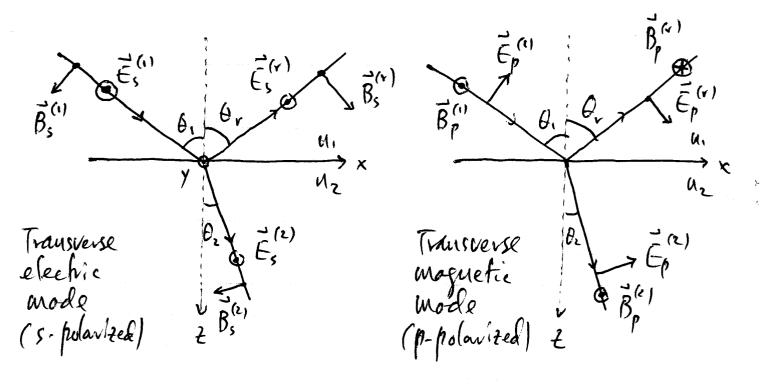
$$-\frac{d}{dt}\vec{\beta} = -\omega \vec{\beta} \sin(\vec{k}\cdot\vec{r} - \omega t)$$

$$\vec{\beta} = \frac{\vec{k}}{\omega} \times \vec{E} = \frac{n}{c} \hat{k} \times \vec{E}$$

$$\hat{k}$$

Transversality relations:
$$\nabla \cdot \vec{c} = 0$$
 $\nabla \cdot \vec{B} = 0$

$$\nabla \cdot \vec{E} = 0 \qquad \Rightarrow \qquad \vec{R} \cdot \vec{E} = 0$$


$$\vec{R} = 0 \qquad \Rightarrow \qquad \vec{R} \cdot \vec{R} = 0$$

$$\vec{J} \cdot \vec{R} = 0$$
 \Rightarrow $\vec{k} \cdot \vec{R} = 0$

Reflection and transmission of a plane-wave l.m. field at a flat witerface between two dielectric materials (E, = 4,2 and (z = 4,2)

$$\vec{E}(\vec{r},t) = \vec{E} \cos(\vec{k} \cdot \vec{r} - \omega t)$$

$$\vec{B}(\vec{r},t) = \vec{B} \cos(\vec{k} \cdot \vec{r} - \omega t) = \frac{n}{c} \hat{k} \times \vec{E} \cos(\vec{k} \cdot \vec{r} - \omega t)$$

$$\vec{K}^{(i)} = N_1(\frac{v_{\ell}}{k}) \left(\sin \theta_1, o, \operatorname{cn} \theta_1 \right) = N_1(\frac{2\overline{q}}{k}) \left(\sin \theta_1, o, \operatorname{cn} \theta_1 \right)$$

$$\vec{K}^{(v)} = N_1(\frac{v_{\ell}}{k}) \left(\sin \theta_r, o, -\operatorname{cn} \theta_r \right) = N_1(\frac{2\overline{q}}{k}) \left(\sin \theta_r, o, -\operatorname{cn} \theta_r \right)$$

$$\vec{K}^{(e)} = N_2(\frac{v_{\ell}}{k}) \left(\sin \theta_r, o, \operatorname{cn} \theta_2 \right) = N_2(\frac{2\overline{q}}{k}) \left(\sin \theta_2, o, \operatorname{cn} \theta_2 \right)$$

Incidence plane the flat plane that contains k(1) and the surface normal or 2-axis

Shell's law of reflection and repraction

From the Maxwell's equations of the boundary, i.e., $E_{it} = E_{zt} \text{ and } B_{it} = B_{zt}$ for s-polarized l.m. wave, $E_{s}^{(i)} \text{ as } (K_{x}^{(i)} \times -\omega t) + E_{s}^{(i)} \text{ as } (K_{x}^{(i)} \times -\omega t) = E_{s}^{(u)} \text{ as } (K_{x}^{(u)} \times \omega t)$ this can only be satisfied when $K_{x}^{(i)} = K_{x}^{(i)} = K_{x}^{(u)}$,

or $Q_{v} = Q_{i} \qquad M_{i} \sin Q_{i} = M_{i} \sin Q_{i}$

For - p-polarized el. cm. wave, $B_p^{(i)}$ as $(k_x^{(i)} \times -\omega t) - B_p^{(i)}$ as $(k_x^{(i)} \times -\omega t) = B_p^{(i)}$ as $(k_x^{(i)} \times -\omega t)$ Again, it can be satisfied if $[K_x^{(i)} = K_x^{(i)} = K_x^{(i)}]$

Reflection and fransurissien coefficients

- tresuel equations (verisit Stokes' relation)

Transverse electric wave (5-polonited compenents)

$$E_s^{(1)} + E_s^{(r)} = E_s^{(2)}$$

$$E_s^{(1)} - E_s^{(r)} = \frac{N_c and_c}{N_i and_i} E_s^{(2)} \qquad (3)$$

(i) + (3):

$$t_{5,12} = \frac{E_5^{(2)}}{E_5^{(1)}} = \frac{Zu_1 c_1 Q_1}{u_1 c_1 Q_1 + u_2 c_1 Q_2}$$

$$Y_{s,12} = \frac{E_s^{(v)}}{E_s^{(i)}} = t_{s,12} - 1 = -\frac{u_z c_1 d_z - u_s c_1 d_z}{u_z c_1 d_z + u_s c_1 d_z}$$

Verify yourself that Vs,12 = - Vs,21, Vs,12 + ts,12 ts,21 = 1

At armel incidence, d, =0, Oz=0,

$$t_{s,12}(\theta=0) = \frac{2u_1}{u_1 + u_2}$$
 $V_{s,12}(\theta=0) = -\frac{u_2 - u_1}{u_2 + u_1}$

Transverse magnetic wave (p-polavited components)

$$E_p^{(i)}$$
 and, $+ E_p^{(v)}$ and, $= E_p^{(e)}$ and $= E_p^{(e)}$ an

from (2):
$$E_p^{(1)} - E_p^{(1)} = \frac{u_2}{u_1} E_p^{(2)} - \cdots$$
 (4)

$$t_{p,(2)} = \frac{t_p^{(2)}}{t_p^{(2)}} = \frac{2u_1 u_1 u_2}{u_1 u_2 u_2 u_3 u_4 u_4 u_5 u_6}$$

$$V_{p,12} = \frac{E_p^{(v)}}{E_p^{(v)}} = 1 - \frac{u_z}{u_1} t_{p,12} = \frac{u_1 c_1 d_2 - u_2 c_2 d_1}{u_1 c_1 d_2 + u_2 c_2 d_1}$$

Again, Stokes velations held.

At normal incidence our choices of assumed directoris of the electric fields, lusure that $t_{p,12} = t_{s,12}$ and $V_{p,12} = V_{s,12}$ as expected.

Divertions et reflected and transmitted electric fields relative to incidence electric field.

Transverse electric mode (TE, s-polarization) $t_{5,12} = \frac{2u_1 u_1 u_2}{u_1 u_2 u_3 u_4} > 0 \quad \text{as leng as } \theta_2 \text{ exists}$ $Y_{5,12} = -\frac{u_2 u_2 u_3 u_4 u_4 u_5 u_2 u_5}{u_1 u_2 u_3 u_4 u_4 u_4 u_5} < 0, \quad \text{if } u_2 \neq u_1$ $< 0, \quad \text{if } u_2 \neq u_1$ $< 0, \quad \text{if } u_2 \neq u_1$ $(as (ong as } \theta_2 \text{ exists})$

Transverse magnetic mode (TM, p-polaritation) $t_{p,n} = \frac{2u, c_n Q_1}{u_1 c_n Q_2 + u_2 c_n Q_1} > 0, \text{ as long as } \theta_2 \text{ exists}$ $V_{p,12} = -\frac{u_2 c_n Q_1 - u_1 c_n Q_2}{u_2 c_n Q_1 + u_1 c_n Q_2} \text{ changes sign et } \theta_1 = \theta_8$ Culien $U_2 c_n Q_1 + u_1 c_n Q_2$ This special incidence angle is called Brewster angle, $V_{p,12}(\theta_8) = 0$

4. Brewster angle Ds: For p-polarized waves, there is an incidence angle Ds at which the reflection vanishes in intensity

$$Y_p = 0$$
 $y_z con \theta_i = y_i con \theta_t$

(only for p-waves)

New Since Suell's law states 4, smiti = 425mitz, we have

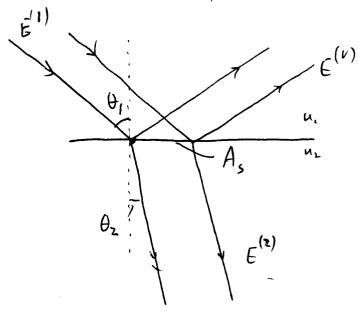
$$\int \sin 2\theta_i = \sin 2\theta_t$$

As Di + Ot (11, + 112), We have

$$2\theta_{i} = \pi - 2\theta_{t}$$

$$\theta_{t} = \frac{\pi}{2} - \theta_{i}$$

$$=>$$
 $\left[\tan\theta_{i}=\frac{n_{z}}{n_{i}}\right]$


 $\theta_{i} = 56^{\circ}40'$ $\omega/4\nu/_{41} = 1.52$

Ep (and therefore $\vec{p}_p^{(1)}$)
is parallel to the reflection
direction, therefore no
dipole-radiation is allowed

Every conservation in e.m. wave reflection and fransurission.

The intensity (energy per unit avea per second)
of a plane-wave e.m. wave is given by

$$I = |\vec{s}| = \left| \frac{1}{\mu_0} \vec{\epsilon} \times \vec{B} \right|^2 = \frac{1}{2\mu_0} J \vec{\epsilon} \cdot |\vec{E}|^2$$

As is the illuminated area at the interface. The total incident energy per unit time

$$W_{i} = \frac{1}{2\mu_{0}} n_{i} |E^{(1)}|^{2} A_{5} cos \theta_{1}$$

Similarly,

$$W_{r} = \frac{1}{2\mu_{0}} u_{1} |\dot{\xi}^{(r)}|^{2} A_{5} con \theta_{1}$$

$$W_{t} = \frac{1}{2\mu_{0}} u_{2} |\dot{\xi}^{(2)}|^{2} A_{5} con \theta_{2}$$

Energy conservation repuires

$$W_{i} = W_{r} + W_{t} = W_{i}(R + T)$$

$$N, cos \theta_i = N, cos \theta_i \left[V\right]^2 + N_2 cos \theta_2 \cdot \left[t\right]^2$$

$$| = | | |^2 + \frac{u_1 a_1 \theta_2}{u_1 a_1 \theta_1} | t |^2$$

regardless for vs & ts or Vp & tp.

(Prove this is satisfied by the fresnel's equations for ts. vs; tp, vp)

Reflectance R.

$$R = \frac{W_{v}}{W_{v}} = |Y|^{2}$$

Transmittance T.

$$T = \frac{w_t}{w_i} = \frac{N_z c_0 O_t}{v_i c_0 O_t} |t|^2 \left(\text{leven if } |t| > 1, T \le 1 \right)$$

General Devivation of Resul equations (2hu)

TM waves

$$\vec{K}^{(1)} = N, \frac{\omega}{c} \left(\sin \theta_{1}, o, \cos \theta_{1} \right) = N, \frac{2\pi}{\lambda} \left(\sin \theta_{1}, o, \cos \theta_{1} \right)$$

$$\vec{K}^{(1)} = N, \frac{\omega}{c} \left(\sin \theta_{1}, o, \cos \theta_{2} \right) = U, \frac{2\pi}{\lambda} \left(\sin \theta_{1}, o, \cos \theta_{1} \right)$$

$$\vec{K}^{(2)} = \left(K_{2x}, o, K_{2t} \right) = \left(K_{x}^{(2)}, o, K_{2}^{(2)} \right)$$

$$\vec{K}^{(2)} = \left(K_{x}^{(2)}, o, K_{2t} \right) = \left(K_{x}^{(2)}, o, K_{2}^{(2)} \right)$$

$$\vec{K}^{(2)} = \left(K_{x}^{(2)} \right)^{2} = \left(K_{x}^{(2)} \right)^{2} = \vec{K}^{(2)} \cdot \vec{K}^{(2)} = K_{2} \left(\frac{2\pi}{\lambda} \right)^{2}, \text{ and}$$

$$\vec{K}^{(2)} = \vec{K}^{(1)} = N, \left(\frac{2\pi}{\lambda} \right) \sin \theta_{1}$$

We have

$$\vec{K}^{(2)} = \left(N, \frac{2\tau}{\lambda} \operatorname{Sind}_{1}, 0, \frac{2\tau}{\lambda} | K_{2} - N_{1}^{2} \operatorname{Sind}_{1}\right)$$

$$= \left(N, \frac{2\tau}{\lambda} \operatorname{Sind}_{1}, 0, | K_{2} \frac{2\tau}{\lambda} | 1 - \frac{N_{1}^{2} \operatorname{Sind}_{1}}{K_{2}}\right)$$

$$= \int K_{2} \frac{2\tau}{\lambda} \left(\operatorname{Sind}_{2}, 0, \operatorname{cnd}_{2}\right)$$

$$\alpha \hat{Q}_{i} = \int \frac{u_{i}^{2} \sin \theta_{i}}{\kappa_{i}} \int \sin \theta_{i} = \int \frac{u_{i} \sin \theta_{i}}{\kappa_{i}} = \frac{u_{i} \sin \theta_{i}}{\kappa_{i}}$$
(50 The Sin $\theta_{i} = u_{i} \sin \theta_{i}$)

Let
$$\vec{E}_{p}^{(2)} = E_{px}^{(2)} \hat{x} + E_{pz}^{(2)} \hat{z} = (E_{px}, o, E_{pt}), \text{ then}$$

$$\vec{E}_{p}^{(2)} \cdot \vec{E}_{p}^{(2)} = (E_{p}^{(2)})^{2} = (E_{px}^{(2)})^{2} + (E_{pz}^{(2)})^{2}$$

$$=\int \left(\widehat{\xi}_{px}^{(2)}\right)^{2}+\left(\widehat{\xi}_{pz}^{(2)}\right)^{2}$$

Since $\vec{K}^{(z)} = \vec{E}_p^{(z)} = 0$ (transversality), we have notarally $\vec{E}_p^{(z)} = \vec{E}_p^{(z)} \text{ end}_z \hat{x} + \vec{E}_p^{(z)} (-\sin \tilde{Q}_z) \cdot \hat{z}$ $= \vec{E}_p^{(z)} (\cos \tilde{Q}_z, o, -\sin \tilde{Q}_z)$

(Remember $\sin^2 \hat{Q}_i + \cos^2 \hat{Q}_i = 1$)

from CBit = CBit;

$$N_1 \in P^{(1)} - N_1 \in P^{(1)} = \int K_2 \in P^{(2)}$$

from Eit = Ezt:

$$E_p^{(i)}$$
 and, $+ E_p^{(i)}$ and, $= E_p^{(i)}$ an $\tilde{\alpha}_i$

$$t_{p} = \frac{2n, coll,}{n, coll_{i} + \tilde{n}_{i} coll_{i}} = \frac{\varepsilon_{p}^{(2)}}{\varepsilon_{p}^{(1)}}$$

$$\frac{1}{2} \left(\frac{1}{2} \right)$$

$$\frac{1}$$

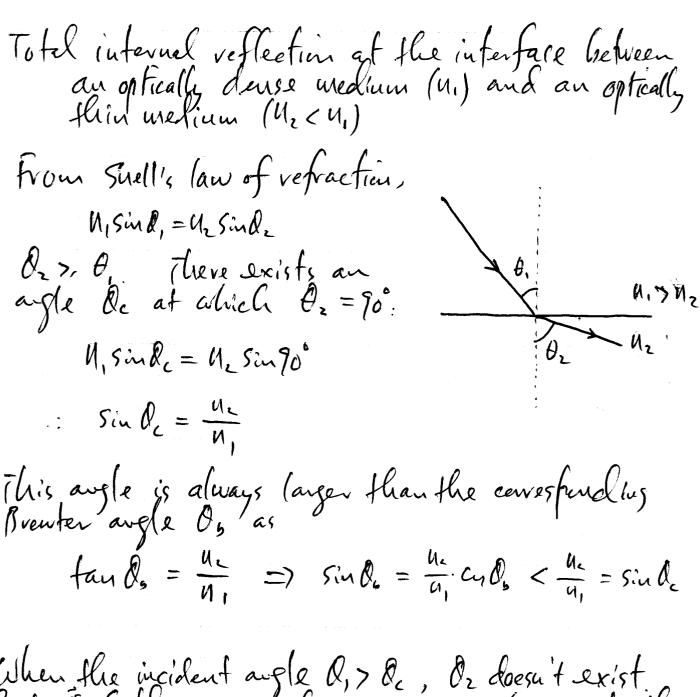
and
$$V_{p} = \frac{N_{1} \operatorname{card}_{1}}{N_{2} \operatorname{card}_{1} + N_{1} \operatorname{card}_{2}} = \frac{\overline{E}_{p}^{(v)}}{\overline{E}_{p}^{(1)}}$$

TE waves.

$$E_5^{(1)} + E_5^{(1)} = E_5^{(1)}$$

$$-N_{1}$$
 and $E_{5}^{(1)}+N_{1}$ and $E_{5}^{(1)}=-\widetilde{N}_{1}$ and $\widetilde{C}_{5}^{(2)}$

$$t_s = \frac{2\eta_1 \, \text{cm} \, Q_1}{\eta_1 \, \text{cm} \, Q_1 + \eta_2 \, \text{cm} \, Q_1} = \frac{E_s^{(2)}}{E_s^{(1)}} \qquad \overline{B}_s^{(2)} = \frac{\int K_2 \, \hat{K}^{(2)} \, \times E_s^{(2)}}{B_s^{(2)}}$$


$$V_{5} = \frac{V_{5} \alpha_{1} \alpha_{2} - \widetilde{V}_{1} \alpha_{2} \widetilde{O}_{1}}{V_{5} \alpha_{1} O_{1} + \widetilde{V}_{1} \alpha_{2} \widetilde{O}_{1}} = \frac{\widetilde{C}_{5}^{(1)}}{\widetilde{C}_{5}^{(1)}}$$

$$\tilde{Q}_{2} \rightarrow \tilde{C}_{3}^{(2)}$$

$$\vec{B}_{s}^{(2)} = \frac{\int K_{L}}{c} \hat{R}^{(2)} \times \vec{E}_{s}^{(2)}$$

$$=\frac{\int K_{2}}{C} E_{s}^{(2)} \left(-\alpha_{s} \widetilde{Q}_{2}, 0, \sin \widetilde{Q}_{2}\right)$$

(Remember:
$$\widetilde{N}_z = JK_z$$
, $con \widetilde{\theta}_z = J \frac{M_z}{K_z} Sin^2 \Omega_z$)

When the incident angle R, > Re, Or doesn't exist.

But É field on Mi-side is none-vanishing only theme
is no l. m. wave propagating away from the infortace.

The electric field on Mi-side is called I vanescence wave. In this case, the incident liversy is totally

veffected (Sout back to Mi-medium).

$$\alpha_{s} \hat{Q}_{z} = \sqrt{1 - \left(\frac{u_{1}^{2}}{u_{e}}\right) \sin^{2} Q_{i}} = i \sqrt{\frac{u_{1}^{2}}{u_{2}^{2}} \sin^{2} Q_{i}} - 1 = i \propto$$

$$V_{p} = \frac{N_{1} \operatorname{cand}_{2} - N_{2} \operatorname{cand}_{3}}{N_{2} \operatorname{cand}_{4} + N_{1} \operatorname{cand}_{2}} = \frac{N_{2} \operatorname{cand}_{3} - i \operatorname{N}_{4} \operatorname{d}_{4}}{N_{2} \operatorname{cand}_{4} + i \operatorname{N}_{4} \operatorname{d}_{4}}$$

$$= 2i \left(\overline{11} - f \operatorname{an} \cdot \frac{N_{1} \operatorname{d}_{4}}{N_{2} \operatorname{cand}_{4}} \cdot 2 \right)$$

$$= e^{i \cdot 2 \left(\frac{\overline{7}}{2} - f \operatorname{an} \cdot \frac{N_{1} \operatorname{d}_{4}}{N_{2} \operatorname{cand}_{4}} \right)} = e^{i \cdot d_{p}}$$

$$R_p = (V_p)^2 = 1$$

$$V_{s} = \frac{u_{s} \alpha_{s} \alpha_{s} - u_{z} \alpha_{s} \alpha_{s}}{u_{s} \alpha_{s} \alpha_{s} + u_{z} \alpha_{s} \alpha_{s}} = \frac{u_{s} \alpha_{s} \alpha_{s} - i u_{z} \alpha_{s}}{u_{s} \alpha_{s} \alpha_{s} + i u_{z} \alpha_{s}}$$

$$= e^{i \phi_{s}}$$

$$= e^{i \phi_{s}}$$

$$R_s = |Y_s|^2 = 1$$

Total internel veflection

Evanescence wave: (t, to, t, to)
When the total reflection occurs, the hoursmit electric field in E_z is not zero, but decreases exponentially from the interface: $K_z^{(+)} = \frac{\omega}{c} u_z \alpha s \theta_t = i \frac{2\pi}{\lambda_s} u_z \cdot \int \frac{u_t}{u_t} s \sin \theta_t - 1$
$K_{t}^{(4)} = \frac{\omega}{c} u_{z} \cos \theta_{t} = i \frac{2\pi}{\lambda_{b}} u_{z} \cdot \int \frac{u_{i}}{a_{c}} s \sin \theta_{i} - 1$
$\vec{E}_{s,p}^{(4)} = \vec{E}_{s,p}^{(4)} e^{-\frac{2\pi}{\lambda_o} \int (u, \sin \theta;)^2 - u_{\perp}^2 \cdot \vec{e}}$
The penetration depth (by 1/2-point of Is.p)
The penetration depth (by 1/2-point of Is.p) Sevenuerence = 1/4TT - 1/1/25 = 1/1/25
(Surface studies, optical microscopy)
optical fiber NSOM
vanocvystals etc.
He -Ne

Reflection and transmission at interface between an insulator (including vacuum er air) and a metal with $\epsilon_z = \epsilon_z' + i \epsilon_z''$.

Ñ. = [€z = N20+1 42]

= 0, +ik,

$$\operatorname{cirll}_{z} = \int_{1-\frac{u_{1}^{2} \operatorname{Sin}^{2} \theta_{1}}{E_{z}}}^{u_{1}^{2} \operatorname{Sin}^{2} \theta_{1}}$$

$$= \frac{\int_{E_{z}-u_{1}^{2} \operatorname{Sin}^{2} \theta_{1}}^{u_{1}^{2} \operatorname{Sin}^{2} \theta_{1}}}{\int_{E_{z}}^{E_{z}}}$$

$$V_{p} = \frac{N_{1} \operatorname{cn} \widetilde{Q}_{1} - \widetilde{N}_{1} \cdot \operatorname{cn} \widetilde{Q}_{1}}{N_{1} \operatorname{cn} \widetilde{Q}_{1} + \widetilde{N}_{2} \operatorname{cn} \widetilde{Q}_{1}}$$

$$V_{5} = \frac{u_{1} c_{1} c_{1} - u_{2}}{u_{1} c_{1} c_{1} c_{2}}$$

$$= \frac{u_{1} c_{1} c_{1} c_{1} - u_{2}}{u_{1} c_{1} c_{2} c_{1}} - u_{1}^{2} c_{1}^{2} c_{1}^$$

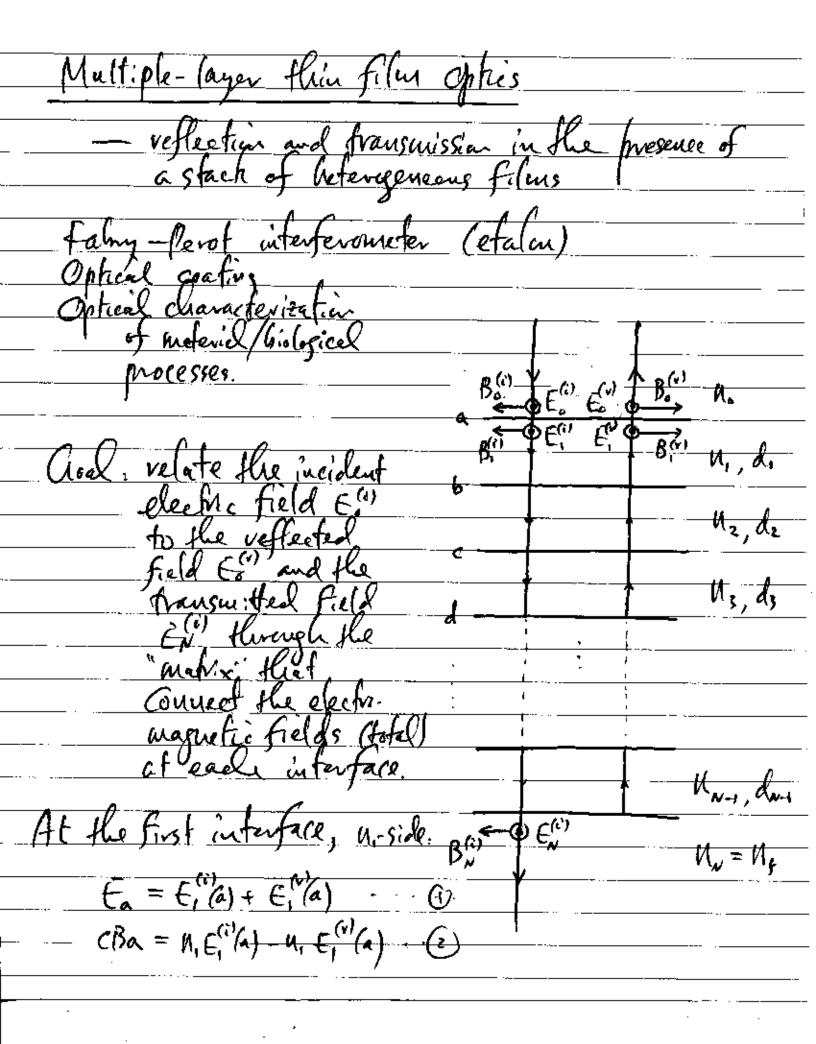
Af normal incidence,
$$Q_1 = 0$$
,

 $V_p(\theta_1 = 0) = \frac{M_1 - (M_{2R} + i M_{11})}{M_1 + (M_{2R} + i M_{21})} = V_s(\theta_1 = 0)$
 $R_p(\theta_1 = 0) = \left[V_p(\theta_1 = 0)\right]^2 = \frac{(M_1 - M_{2R})^2 + M_{11}^2}{(M_1 + M_{1R})^2 + (M_{21})^2}$
 $K_{24} = K_2 = \left(\frac{2\pi}{\Lambda}\right)\widetilde{M}_2 = \left(\frac{2\pi}{\Lambda}\right) \cdot M_{1R} + i\left(\frac{2\pi}{\Lambda}\right) M_{21}$
 $E_2(z) = E_1 \cdot t_p(\theta_1 = 0) \cdot e^{i K_{22} z}$
 $= E_1 \cdot t_p(\theta_1 = 0) \cdot e^{i K_{22} z} \cdot \frac{2\pi}{\Lambda} M_{21} \cdot z$
 $I_2(z) = I_2(z = 0) e^{-\frac{2\pi}{\Lambda}} M_{21} \cdot z$

Kin depth S (the distance of which $I_2(s) = I_1(z)$)

Skin depth S (the distance of which Iz(8)=12/2% $S = \frac{\lambda}{1/\pi}$

7. Total veflection by a until with
$$E(\omega) = 1 - \frac{\omega_r^2}{\omega^2} < 0$$
In this case (Let $E(\omega) = N_1^2$)


$$N_2 \operatorname{cur} O_t = \int f(\omega) - u_1^2 \operatorname{sun} d_1$$

$$M_2 = \int f(\omega) = i \int [f(\omega)]$$

$$cm\Omega_{t} = \int 1 + \frac{N_{1}^{2}}{|\xi(\omega)|} sm^{2} d$$
, >0

$$V_s = -\frac{N_2 c_1 O_t - N_1 c_2 O_t}{N_1 c_2 O_t + N_1 c_2 O_t} = e^{i \phi_s}$$

$$V_{p} = \frac{u_{1} con \theta_{t} - u_{2} con \theta_{t}}{u_{1} con \theta_{t} + u_{2} con \theta_{t}} = e^{i \phi_{p}}$$

At the second interface, on
$$u_1 - side$$
,

$$E_b = E_1^{(i)}(a) e^{i\frac{1}{4}t} + E_1^{(i)}(a) e^{i\frac{1}{4}t} = 0$$

$$CB_b = u_1 E_1^{(i)}(a) e^{i\frac{1}{4}t} - u_1 E_1^{(i)}(a) e^{-i\frac{1}{4}t} = 0$$

$$\Phi_1 = \frac{2\pi}{\lambda} \text{ M.d.}, \text{ Sectionally, } \Phi_2 = \frac{2\pi}{\lambda} \text{ M.d.}, \text{ CB}_g = u_N E_N^{(i)}$$

From (i) and (ii).

$$E_1^{(i)}(a) = \frac{u_1 E_2 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = e^{i\frac{1}{4}t} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1} = 0$$

$$E_1^{(i)}(a) = \frac{u_1 E_3 + CB_3}{2u_1$$

Reflect the process for the subsequent layers,

$$\begin{pmatrix}
E_{N} \\
E_{N}
\end{pmatrix} = M_{1}M_{2} - M_{2} - M_{N-1}$$

$$M = M_{1}M_{2} - M_{1} - M_{N-1}$$

$$M = M_{1}M_{2} - M_{1}M_{2}$$

$$M_{1} = \begin{pmatrix}
M_{1} & M_{12} \\
M_{2} & M_{2}
\end{pmatrix}$$

$$M_{2} = \begin{pmatrix}
M_{1} & M_{12} \\
M_{2} & M_{2}
\end{pmatrix}$$

$$M_{3} = \begin{pmatrix}
M_{1} & M_{12} \\
M_{2} & M_{2}
\end{pmatrix}$$

$$M_{4} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{2} & M_{2}
\end{pmatrix}$$

$$M_{5} = \frac{27}{4} N_{1} d_{1}^{2}$$

$$M_{6} = M_{1} + \frac{27}{4} M_{12}$$

$$M_{12} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{pmatrix}$$

$$M_{13} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{22} & M_{23}
\end{pmatrix}$$

$$M_{14} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{22} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{22} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{22} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{22} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{22} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{23} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{3}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{24} & M_{24}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{15} & M_{14}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{15} & M_{14}
\end{pmatrix}$$

$$M_{15} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{15} & M_{14$$

$$\frac{\left(\frac{c^{(i)}}{c_0}\right)}{\left(\frac{c^{(i)}}{c_0}\right)} = \frac{\left(\frac{1}{2} \frac{1}{2u_0}\right)}{\left(\frac{c}{2} \frac{1}{2u_0}\right)} \left(\frac{c}{2u_0}\right) \left(\frac{c}{2u_0}$$

Check the expressions in the known Cinit: Only one intenface separating 40 & 445 $W_{j} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Case # 2 fabry-Perot, only one layer inbetween, 74 n'aso + using + u (n'using + aso) $T = |t|^2 = \frac{1}{|t|^2 \sin \theta}$ $S = \frac{4v^2}{(t-v)^2}$, $V = \frac{u-u'}{u+u'}$

NA - NA antiveflection coatings

$$\frac{d_1 = \frac{2\pi}{\lambda} u_1 d_1 = \frac{\pi}{2} \left(\frac{\lambda}{4} \right)}{d_1} \qquad \frac{u_1}{d_1} \qquad \frac{u_2}{d_2} = \frac{\pi}{2} \left(\frac{\lambda}{4} \right) \qquad u_3$$

$$\begin{array}{c|c}
\hline
 & \overline{u}, \\
\hline
 & \overline{u$$

4. My + 4. My Mile + M21 + 14, M22

(0 minimiter,
$$u_0 u_1 = u_1 u_1 = \frac{u_2}{u_1} = \frac{u_3}{u_4}$$

$$\phi_{1} = \frac{2\pi}{\lambda_{0}} u_{1} d_{1} = \frac{\pi}{2}$$

$$\phi_{2} = \frac{2\pi}{\lambda_{0}} u_{2} d_{2} = \frac{\pi}{2}$$

$$M = \begin{pmatrix} 0 & \frac{1}{i u_{1}} \\ \frac{u_{1}}{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{i u_{2}} \\ \frac{u_{2}}{i} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{u_{2}}{u_{1}} & 0 \\ 0 & -\frac{u_{1}}{u_{2}} \end{pmatrix}$$

$$2N \begin{cases} \frac{u_{0}}{u_{1}} & 0 \\ \frac{u_{2}}{u_{2}} & 0 \end{cases}$$

$$M^{2N} = \begin{pmatrix} \left(\frac{q_1}{u_1}\right)^{2N} & 0\\ 0 & \left(\frac{q_1}{u_2}\right)^{2N} \end{pmatrix}$$

Lef
$$u_1 > u_1$$
 =) $\left(\frac{u_1}{u_1}\right)^{2N} >> 1$, $\left(\frac{u_1}{u_2}\right)^{2N} \ll 1$,

$$V = \frac{u_0 \cdot M_{11} - u_3 M_{22}}{u_0 \cdot M_{11} + u_3 M_{22}} \simeq 1 - 2 \left(\frac{u_3}{u_0}\right) \left(\frac{u_1}{u_2}\right)^{4N} \simeq 1$$

~

#

Optical d'electic constant.

$$\int \frac{\nabla^2 \vec{E} = EE_0 p_0}{\nabla^2 \vec{E}} \frac{\vec{\delta}^2}{\sqrt{2}\vec{E}} = \frac{C}{u}$$

$$C = C_0 E, \quad E = \frac{E_0}{E}$$

Dielectric constant t

$$\frac{1}{E_0} = \frac{\hat{c}_0}{\epsilon_0} \frac{Q_s}{\epsilon_0} \qquad \frac{1}{E_0} = \frac{Q_s - Q_s}{\epsilon_0} \qquad \frac{1}{E_0} = \frac{Q_s}{\epsilon_0} \qquad \frac{Q_s}{\epsilon_0} = \frac{Q_s}{\epsilon_0} \qquad \frac{Q_s}{\epsilon_0}$$

E induces an extra dipole moment in the wolconder constituent by pulling the opposite charges along the two opposing direction parallel to E. The volume dowsity of the induced dipole moment is defined as the polarization vector

$$\frac{1}{p} = \frac{\sum \vec{p}_{i,j}}{\Delta V} = \epsilon \cdot \times \vec{\epsilon}, \quad \chi = \frac{\vec{p}}{\epsilon \cdot \vec{\epsilon}}, \quad \vec{j} = \epsilon \cdot \vec{\epsilon} + \vec{p}$$

$$\overrightarrow{p} = \frac{Q_{5} \cdot 5}{(A \cdot 5)} \cdot \widehat{\epsilon} = \frac{Q_{6}}{A} \cdot \widehat{\epsilon}, \implies X = \frac{Q_{6}}{\epsilon_{0} A \epsilon} = \frac{Q_{6} \epsilon}{\epsilon_{0} A \epsilon_{0}} = \frac{Q_{6} \epsilon}{Q_{5}} = \frac{Q_{6} \epsilon}$$

Calculation of Ke and K (Nucleus: immobile)
In an oscillating electric Field, only electrons are moved by the field (Contont's (aw).
E(+) = E e (electrons are mode)
Newfon's egy. $\frac{d^2\vec{v}}{dt^2} = -k\vec{v} - u_t r^2 \frac{d\vec{r}}{dt} + 7.\vec{\xi} = -i\omega t$ $\frac{d^2\vec{v}}{dt^2} = -k\vec{v} - u_t r^2 \frac{d\vec{r}}{dt} + 7.\vec{\xi} = -i\omega t$
vestiving friction force by the
force by force that l. m. field auteus daufs the electron motion
The induced electron displacement follows E(t) with the same time dependence:
$ \vec{V}_{ind}(t) = \vec{V}_{ind} e^{-i\omega t} $
$ \omega^2 m_e \vec{r}_{ind} = - k \vec{r}_{ind} + i M_e \omega r \vec{r}_{ind} + \frac{2e\vec{E}}{e} $
-1 - 2e/ω

= fransition (ies)

Define: $\omega_o^2 = k/w_e$ (k: spring constant)

Vind = 2 (We E

Induced polavitation vector P

P= No 2e Vind = No 2e /Me =

Livear susceptibily Xe and dielectic constant &

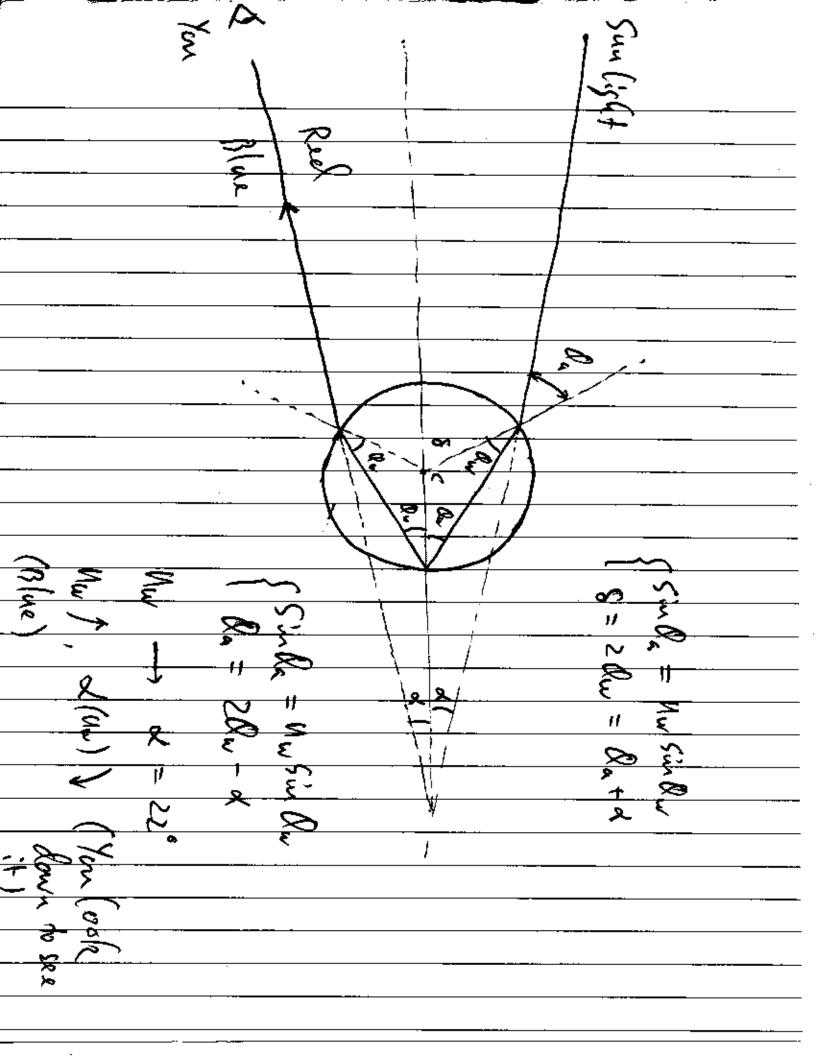
 $\chi_e(\omega) = \frac{\vec{p}}{\vec{E}} = \frac{N_b \cdot \ell_e^2 / m_e}{\omega_o^2 - \omega^2 - i \omega r^2}$

 $K(\omega) = 1 + \frac{\chi_e}{\epsilon_o} = 1 + \frac{N_b \cdot 2e^2 / \omega_e \cdot \epsilon_o}{\omega_o^2 - c^2 \omega^2}$

Masura freprieury Wp. Cu: Nb=8.93×10

Lasura freprieury Wp. Cu: Nb=8.93×10

Lasura freprieury Wp. Cu: Nb=8.93×10


Lasura freprieury Wp. Cu: Nb=8.93×10

 $\frac{\omega_{p}^{2} = 2.8 \times 10^{32} \text{ Hz}^{2}}{\omega_{p}^{2} - 0.65 \times 10^{6} \text{ Hz}^{2}}$ $W_{p} = 1.65 \times 10^{6} \text{ Hz}^{2}$

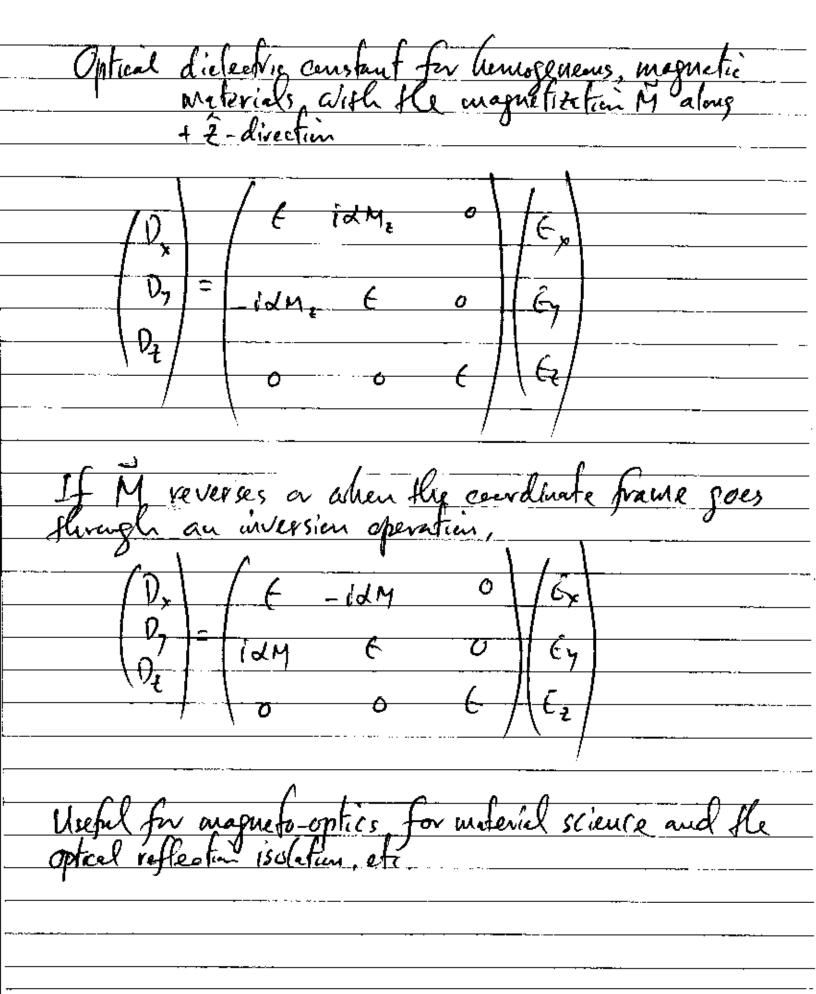
2. Optical constant of unetals and insulators: Visible frequency range: 2.7 ×10 Hz (ved) - 5×10 Hz (purple) Metals (Drude model) Free electrons with we, Ne and spring constant K=0, $\omega_p^2 = \frac{4\pi N_e e^2}{m_e} \quad \text{or} \quad \omega_p^2 = \frac{N_b \cdot e^2}{m_e \cdot \epsilon_0} \quad (MKSA)$ $f(\omega) = 1 - \frac{\omega_p^2}{\omega - \omega_{pi}}$ Typically, $P = 10^{13} \text{ Hz}$, $\omega_p = 10^{16} \text{ Hz}$, for $\omega_{77} P$. $E(\omega) \approx 1 - \frac{\omega_p^2}{\omega^2}$ when w is in the visible range, t(w) < 0, the light is totally reflected =) silver, aluminu appear silver white. Exception: Cu has natural resonances starting at ovange
Red color, thus red & ovange light are reflected,

yellow through purple light are partly to passing
through =) Cu, An are redish & yellowish.

Optical constants for insulators and seuriconductors
K to natural frequency wo >> w, wo in althouislet range
$A_{TA} = A_{A} = A_{$
$\mathcal{H}(\omega) = 1 + \frac{\sqrt{1+\omega_1/M}}{\omega_1^2} \approx 1 + \frac{\sqrt{1+\omega_2}}{\omega_2^2} > 1$
W, -W
$N(\omega) = \sqrt{\frac{1}{E}} = N \times \sqrt{\frac{N_{c}e^{2}}{N_{c}}} = \sqrt{\frac{N(v_{c} e^{2})}{N(v_{c} e^{2})}} \times \sqrt{\frac{N(v_{c} e^{2})}{N(v_{c} e^{2})}}} \times \sqrt{\frac{N(v_{c} e^{2})}{N(v_{c} e^{2})}$
(vaintous effect)
Insulators are fransparant in visible range (Wo Z 10 Hz)
n(water) = 1.33
n (p(astic) = 1.3
M(s(ass) = 1.45 - 2.7 Naiv = 1+10 (45111-1) = 1.0005
(1) 1 (1) 1 (1) 15 (1)
Semicenductor fransparant in Gear IR range (Wo-2x10 Hz)
M (5:) = 4 (1.11eV) (Wo ~ 2x10 1/E
11 (1) 1 (1) (1) (1) (1) (1) (1) (1) (1)
N(Ge) = 4 (0.66eV) WN 3-5000 (+2)
u (G-A) = 4 (1.43ev)
18 will liel I without barrent into S. Go Take
(Because visible light uniformly fransmit into Si, Ge, GaAs, they appear silver-white, but much darker!)
they appear silver-anite, but much amper.

3. Optical constants in anisotropic media.	
(Examples: quarte, Cacite, Ciguid crystals,	etc.)
In anisotropic media, the storing constant three frincipal axes (x, g, z) are not	equel:
$\frac{M \frac{d'x}{dt'} = -k_x \times - MR \frac{dx}{dt} + 2E_x}{dt'}$	<u>*</u>
M diy = - K, y - MP, dr + 2 E,	1000000
M di = - Ket-MIt dt + 8 ft	
Dielectric tensor E	Kxx = Ky < Kzz
$-\frac{\epsilon_{xx} - 1 + \frac{\omega_{y}^{2}}{\omega_{x}^{2} - \omega^{2} - \omega_{x}^{2}}}{\omega_{x}^{2} - \omega^{2} - \omega_{x}^{2}}$	
	
——————————————————————————————————————	
1) Uniaxial materials: Exx = Gyy + Get 2 axis called opt	ic axis
(2) Biaxial materials: Exx # Eyy Exx # Fe un offic axis	e, Eyy \$ Eet

(3) isotropic materials: (xx = Eyy = fzz (Examples: lignids, awarphors solids, many crystels)


With x. y. Z along the flive principal axes of the material.

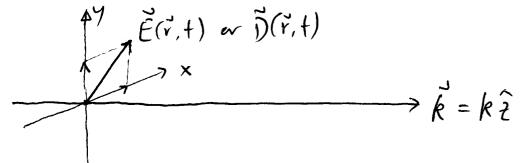
$$\begin{pmatrix}
D_{x} \\
D_{y}
\end{pmatrix} = \begin{pmatrix}
E_{xx} \\
0 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
E_{y} \\
E_{t}
\end{pmatrix}$$

$$\begin{pmatrix}
E_{t} \\
E_{t}
\end{pmatrix}$$

Optical diefection constant for homogeness, optically active materials (DNA, sugar, quante, etc.) Since a helix looks exactly the same when you into either end of it, in any cartesian coordinate frame with a fixed handediness (typically vight-hand the dielectric constant is expressed as a tenen, Exx = Eyy = Ezz = E Exy = - Eyx = ix Ext = Exx = Eyz = Ezy *

Polonization of light


 $\vec{E}(\vec{r},t)$ is, after all, a vector wave. The vector value is described in terms the polaritation state of $\vec{E}(\vec{r},t)$.

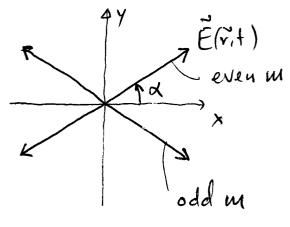
 $\vec{E}(\vec{r},t)$ is polarized: if two crethogonal, (inear compenents that make up $\vec{E}(\vec{r},t)$ vary with time synchronously

É(r,t) is unfolavited: if two orthogonal, Circar compenents vary with time randomly

Ē(v,+) is partially polarited: if it centains a polarited part and an unpolarited part.

Decembosition of $E(\vec{r},t)$ or $D(\vec{r},t) = E \cdot E(\vec{r},t)$ into hos orthogonal, linear, companents that are perpendicular to k (direction of phase propagation) (In anisotopic wateriels, only D is perpendicular to k)

Ju X-y coordinate france,


$$\vec{E}(\vec{r},t) = \hat{x} E_{xo}(\vec{r},t) \cos \left[\phi_{x}(\vec{r},t) - \omega t \right] \qquad (\vec{e}_{xo} > 0)$$

$$+ \hat{y} \hat{E}_{yo}(\vec{r},t) \cos \left[\phi_{y}(\vec{r},t) - \omega t \right] \qquad (\vec{e}_{yo} > 0)$$

For authorized light, $(\bar{r},t)-\phi_{x}(\bar{r},t)$ varies randomly and for $E_{xo}(\bar{r},t)/E_{yo}(\bar{r},t)$ varies varies randomly.

For polarited light, $\theta_y(\bar{v},t) - \theta_x(\bar{v},t)$ is a constant of time, and $E_{xo}(\bar{v},t)/E_{y_o}(\bar{v},t)$ or $E_{y_o}(\bar{v},t)/E_{x_o}(\bar{v},t)$ is also a constant of time.

Cinearly polarited light: $\vec{E}(\vec{r},t)$ fraces out a straight line $\phi_y(\vec{r},t)-\phi_x(\vec{r},t)=m\pi$, $m=0,\pm1,\pm2,\cdots$

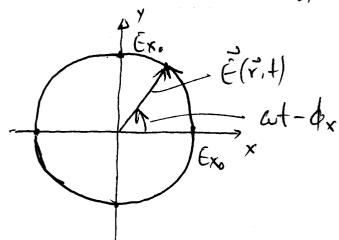
$$\vec{E}(\vec{v},t) = \hat{\chi} E_{x_0} c_x [\phi_{x_0} - \omega t]$$

$$\pm \hat{\gamma} E_{y_0} c_x [\phi_{x_0} - \omega t]$$

$$= \int \vec{E}_{x_0} + \vec{E}_{y_0} \cdot c_x (\phi_{x_0} - \omega t)$$

$$\cdot (\hat{\chi} c_x d \pm \hat{\gamma} s_{y_0} c_x d)$$

Circularly polonited (ight, $\vec{E}(\vec{v},t)$ fraces cut a circle $\phi_y(\vec{v},t) - \phi_x(\vec{v},t) = 2m\pi \pm \frac{\pi}{2}$, $M = 0, \pm 1, \pm 2, \dots$ $\vec{E}(\vec{v},t) = E_{yo}(\vec{v},t)$


Left-circularly polarited light: (counter-clock wise)
$$\hat{\Phi}_{y}(\vec{v},t) - \hat{\Phi}_{x}(\vec{v},t) = 2m\pi + \frac{\pi}{2}$$

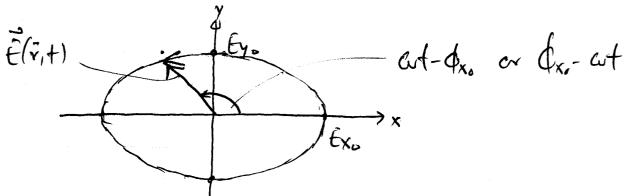
$$\hat{E}(\vec{v},t) = \hat{x} \, \hat{E}_{xo} \, \omega_{x}(\omega t - \hat{\Phi}_{x}) + \hat{y} \, \hat{E}_{yo} \, \omega_{x}(\omega t - \hat{\Phi}_{x} - \frac{\pi}{2})$$

$$= \hat{x} \, \hat{E}_{xo} \, \omega_{x}(\omega t - \hat{\Phi}_{x}) + \hat{y} \, \hat{E}_{xo} \, \hat{\omega}(\omega t - \hat{\Phi}_{x})$$

$$= \hat{E}_{xo} \left[\hat{x} \, \omega_{x}(\omega t - \hat{\Phi}_{x}) + \hat{y} \, \hat{S}_{xo}(\omega t - \hat{\Phi}_{x}) \right]$$

unit vector that votates cow at angular frequency w

Right-circularly polarized light: (clockwise) $\Phi_{\mathbf{y}}(\vec{r},t) - \Phi_{\mathbf{x}}(\vec{v},t) = 2m\pi - \frac{\pi}{2}$ $\vec{E}(\vec{v},t) = \hat{\mathbf{x}} E_{\mathbf{x}o} cos(\omega t - \Phi_{\mathbf{x}}(\vec{v},t)) + \hat{\mathbf{y}} E_{\mathbf{y}o} cos(\omega t - \Phi_{\mathbf{x}} + \frac{\pi}{2})$ $= E_{\mathbf{x}o} \left[\hat{\mathbf{x}} cos(\Phi_{\mathbf{x}} - \omega t) + \hat{\mathbf{y}} sin(\Phi_{\mathbf{x}} - \omega t) \right]$ unit veeter that votates elockwise $at angular velocity \omega$

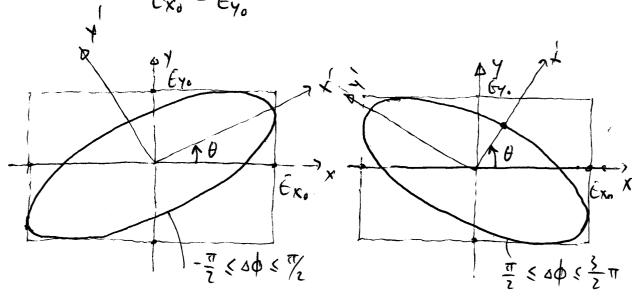

 $\vec{\epsilon}(\vec{r},t)$ $\phi_{x}-\omega t$

Elliptically polarized light:
$$\vec{E}(\vec{v},t)$$
 traces out an ellipse.
 $\phi_{Y}(\vec{v},t) - \phi_{X}(\vec{v},t) = 2m\pi \pm \frac{\pi}{2}$
 $E_{Xo}(\vec{v},t) \neq E_{Yo}(\vec{v},t)$

$$\frac{d_{y}(\hat{r},t) - \phi_{x}(\hat{r},t)}{\vec{E}(\hat{r},t)} = 2\alpha \pi t + \frac{\pi}{2}$$

$$\vec{E}(\hat{r},t) = \hat{x} \underbrace{E_{xo} c_{xo}(\omega t - \phi_{xo}) + \hat{y}}_{X(t)} \underbrace{E_{yo} sin(\omega t - \phi_{xo})}_{Y(t)}$$

$$\frac{\chi'(t)}{E_{\chi_0}} + \frac{\chi'(t)}{E_{\chi_0^2}} = 1$$
 (equation of an ellipse)



Generally, we have an elliptically polarited (ish cike $(x,t)-b_x(\bar{r},t)=\delta \phi$ arbitray (but fixed) $(x,t)=\delta \phi$ arbitray (Exo/ $(x,t)=\delta \phi$)

E(r,t)= x Exo es (\$\phi_x - \omega t\) + \$\tilde{y} \text{Eyous}(\$\phi_x - \omega t + \omega \text{\$\text{\$\phi}\$})\$

traces out an ellipse that is suclosed in a box of 2 \text{Exo} \times 2 \text{Eyo.} The principal axis is filted with respect to the x-axis by \$\theta\$:

 $fan 2\theta = \frac{2\bar{E}_{xo}\bar{E}_{yo}\cos{\Delta\phi}}{\bar{E}_{xo}^2 - \bar{E}_{yo}^2}$

To défermine allether it "rotates" clockwise a not, evaluate d'Ey(+)/dt at ϕ_{x-} art =0:

 $\frac{d\hat{E}_{y}(A)}{dt}\Big|_{\phi_{x-u}t=0} = \omega E_{y}. \sin s\phi < \frac{1}{2} \operatorname{clockwise}. \quad \pi < s\phi < 2\pi.$

2. Jones veeter refresentation of polarited (islit:
$$\vec{E}(\vec{r},t) = e^{i\vec{k}\cdot\vec{r} - i\omega t} (\hat{x} E_{xo}e^{i\phi_x} + \hat{y} E_{yo}e^{i\phi_y})$$

$$= e^{i\vec{k}\cdot\vec{r} - i\omega t} (\hat{x}, \hat{y}) \begin{pmatrix} E_{xo}e^{i\phi_x} \\ E_{yo}e^{i\phi_y} \end{pmatrix}$$

Jones vector of E (r.t).

$$\widetilde{E}_{\nu} = \begin{pmatrix} E_{x} \cdot e^{i\phi_{x}} \\ E_{y\nu} \cdot e^{i\phi_{y}} \end{pmatrix} = E_{x\nu} \cdot e^{i\phi_{x}} \begin{pmatrix} I \\ \frac{\tilde{E}_{y\nu}}{\tilde{E}_{x\nu}} \cdot e^{i(\phi_{y} - \phi_{x})} \end{pmatrix}$$

Since only the relative phase \$7. 0x and the relative magnitude \$7./6x. determine the state of holaritation of E(i), Jones vector E. is always hormalized, and only the second confirment carries the phase factor:

$$\widetilde{\epsilon}_{o} = \begin{pmatrix} \omega_{o} d \\ e^{i\phi_{o} - i\phi_{x}} \sin d \end{pmatrix}$$

(i) Cinearly Prolarized light:

$$\phi_{y^{-}} \phi_{x} = \pi, \qquad \widehat{E}_{v} = \begin{pmatrix} \omega_{x} \\ -\sin \alpha \end{pmatrix}$$

Left- circularly polarited (ight:

Right-Circularly polarited light.

$$\phi_y - \phi_x = -\frac{\pi}{2}$$
: $\overline{\xi}_o = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$

(iii) Elliptically polarized light:

Ceff-elliptically polarized light:

$$\widetilde{E}_{v} = \begin{pmatrix} \cos \alpha \\ e^{i\phi_{y}-i\phi_{x}} & \sin \alpha \end{pmatrix}, \quad 0 < \phi_{y} - \phi_{x} < \tau_{1}$$

$$= \frac{1}{\int A^{2}+B^{2}+c^{2}} \begin{pmatrix} A \\ B+ic \end{pmatrix} \qquad (A, C, >0)$$

$$E_{x_0} = 3$$
, $E_{y_0} = \sqrt{2+1} = \sqrt{5}$
 $e_{y_0} = \frac{1}{2} = 26.6^{\circ} = 0$ $0 < \frac{9}{2} - \frac{9}{2} < 180^{\circ}$

=) left elliptically polarized

The inclination angle of the principal axis $\theta = \frac{1}{2} \tan^{-1} \frac{2 \times 3 \times 5 \times \cos(26.6^{\circ})}{3^{2} - 5} = 35.8^{\circ}$

Equation of the ellipse:

$$\frac{\xi_{x}^{2}}{\xi_{x}^{2}} + \frac{\xi_{y}^{2}}{\xi_{y}^{2}} - 2 \frac{\xi_{x}}{\xi_{x}} \frac{\xi_{y}}{\xi_{y}} \cos \varphi = \sin \varphi \qquad (\varphi = \varphi_{y} - \varphi_{x})$$

$$\frac{E_{x}^{2}}{1} + \frac{E_{y}^{2}}{5} - 0.267 E_{x} E_{y} = 0.2$$

3. Mathematical representation of polariters and wave plates: Jones Matrix

Cinear polariter.

A device which allows one linear polarited compenent to pass through and rejects the crthogonally linear polarited compenent. The direction of the passing polaritation is the transmission axis TA.

Jones matrix of a linear polariter with TA along x:

$$M_{i} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

so that

Similarly, when TA is along 9:

$$M_y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

[inear polariter with TA at A from &-axis

$$M(\theta) = \begin{cases} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{cases}$$

Easily moved by making sure
$$M(\theta)$$
 (and) = (and), $M(\theta)$ (-sind) = $(sin\theta)$, $M(\theta)$ (-sind) = $(sin\theta)$

Passing an arbitrarily polarited light shrough a linear polariter:

$$\widetilde{E}_{ine} = \begin{pmatrix} \widetilde{E}_{Xo} e^{i\Phi_{X}} \\ \widetilde{E}_{Yo} e^{i\Phi_{Y}} \end{pmatrix}$$

$$\widetilde{E}_{out} = M(\theta) \widetilde{E}_{ine} = \begin{pmatrix} \alpha^{0}\theta \ \widetilde{E}_{Xo}e^{i\Phi_{X}} + \sin\theta \cos\theta \ \widetilde{E}_{Yo}e^{i\Phi_{Y}} \\ \sin\theta \cos\theta \ \widetilde{E}_{Yo}e^{i\Phi_{Y}} + \sin\theta \ \widetilde{E}_{Yo}e^{i\Phi_{Y}} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha^{0}\theta \ \widetilde{E}_{Xo}e^{i\Phi_{X}} + \sin\theta \ \widetilde{E}_{Yo}e^{i\Phi_{Y}} \end{pmatrix} \begin{pmatrix} \alpha^{0}\theta \\ \sin\theta \end{pmatrix}$$

$$\approx \sin\theta$$

Phase-vetarding plate (phase-vetarder).

Introducing a relative phase Shift between the two electric field compenents along the fast axis (FA) and the slaw axis (SAI).

Let FA along x, SA along y: $(N_y = N_s > N_x = N_f)$

(Smaller phase velocity:
$$V_s = \frac{c}{n_s}$$
)

(larger phase velocity: $V_f = \frac{c}{n_f}$, $N_f < N_s$)

Quarter-wave plates.

$$E_y - E_x = \pm \frac{\pi}{2} + 2m\pi = \frac{2\pi}{\lambda} \left(m\lambda \pm \frac{\lambda}{4} \right)$$

$$M = e^{-i\pi/4} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad (\epsilon_y - \epsilon_x = \frac{\pi}{2} + 2m\pi)$$

$$M = e^{i\frac{\pi}{4}} \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} \qquad (6y - 6x = -\frac{\pi}{2} + 2m\pi)$$

Starting With a linearly polarited light along 45° from FA (x-axis).

$$\tilde{E}_{lefue} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\widetilde{E}_{cfln} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm i \end{pmatrix} \Rightarrow Circularly polarited (is ht.)$$

If 1/4-plate's SA makes & about y, in x-y frame,

$$\begin{array}{lll}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

$$M_{N_4}(\theta) = \begin{pmatrix} c_{11}Q - s_{11}Q \\ s_{12}Q + c_{13}c_{11}Q \\ s_{12}Q + c_{13}Q + c_{13}c_{11}Q \\ s_{12}Q + c_{13}Q + c_{13}c_{11}Q \\ s_{12}Q + c_{13}Q + c_{13}Q \\ s_{12}Q + c_{13}Q + c_{13}Q \\ s_{13}Q + c_{13}Q + c_{13}Q + c_{13}Q \\ s_{13}Q + c_{13}Q + c_{13}Q + c_{13}Q \\ s_{13}Q + c_{13}Q + c_{13}Q + c_{13}Q + c_{13}Q \\ s_{13}Q + c_{13}Q + c$$

Half-ware plate:

$$\begin{aligned} \xi_{y} - \xi_{x} &= \pm \pi = \pm \left(\frac{2\pi}{\lambda}\right) \cdot \frac{\lambda}{2} \\ M &= e^{-i\frac{\pi}{\lambda}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \xi_{y} - \xi_{x} &= \pi \\ +i\frac{\pi}{\lambda} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \xi_{y} - \xi_{x} &= -\pi \end{aligned}$$

$$M_{\frac{2}{2}} e^{+i\frac{\pi}{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \epsilon_{y} - \epsilon_{x} = -\pi$$

starting with a linearly polarited light along & from SA or x-axis.

By infating SA from the incoming (inearly holarized light by 0, the entroing light will be linearly polarized, but rotated by 20 *

$$M_{\chi_2}(\theta) = \left(\begin{array}{c} c_1 & 20 & 5in 20 \\ 5in & 20 & -a_1 & 20 \end{array} \right)$$

Rotater:

Rotate a linearly polarized light by a fixed angle B regardless the initial evientation of the linear polarization.

$$\widetilde{E}_{inc} = \begin{pmatrix} cnd \\ sin \theta \end{pmatrix}$$

$$M_{rotefer}(\beta) = \begin{pmatrix} cn\beta & -sin\beta \\ sin\beta & cn\beta \end{pmatrix}$$

$$made with optically active or magnetic underials$$

$$v = (m0) \quad (as (b+\beta))$$

$$\widetilde{E}_{affer} = M_{rotator}(\beta) \begin{pmatrix} \omega_{1} 0 \\ \sin 0 \end{pmatrix} = \begin{pmatrix} \omega_{1} (\theta + \beta) \\ \sin 0 \end{pmatrix} = \begin{pmatrix} \omega_{1} (\theta + \beta) \\ \sin 0 \end{pmatrix}$$

System Joues Makix

$$M_{1/2}(\alpha) = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix}$$

$$E = T\tilde{E}$$

If the Wincipel axes of wave plates make angles (x's) with vespect to the x-axis, one needs to perform proper coordinate transformet

Eaffer = My M3 MeM, Eine

 $M_3 = T^+ M_{wp} T$

Light propagation in Anisotropic media,
optically active media, magnetic media
— Crystel Optics

In isotropie materiels (that are have implicitly assumed so far), only one dielectric constant & and thus one refractive index N = SE (real or complex ability) character ites the optical response.

As a result, $\vec{D} = \vec{E} = \vec{E} \cdot \vec{k} = 0$. \vec{E} can be (inearly polarized, circular polarized, or elliptically polarized plane wave with the same refractive index. Since there are two linearly independent vectors that are orthogonal to \vec{k} , one can state that in an isotropic medium, siven the direction of the phase propagation \hat{k} , there are two orthogonal eigenmodes of plane-wave electromagnetic field with the same refractive index $u = \vec{E}$. These two listnowedes can be a pair of linear polarization Two lightmodes can be a pair of linear polaritation compenents (in the presence of a surface, we choose TE and TM), or visht-circular and left-circular polarization compenents, or a pair of orthogonal elliptically polarized compenents: $\widetilde{E}_{i} = \begin{pmatrix} a \\ ib \end{pmatrix}$, $\widetilde{E}_{i} = \begin{pmatrix} b \\ -ia \end{pmatrix}$

In anisotropic materials, or optically active materials, or magnetic materials, we can still have plane-wave harmonic electromagnetic field. But, given a direction of phase propagation k, we again expect two algebraically (i.e., "(inearly) independent vectors with their vespective vegractive indices. These two vectors are generally two critics comel, elliptically polarited light components, and the principal axes of the ellipses are fixed by k and the principal axes of the ellipses are fixed by k and the principal axes of the crystalline materials or of the helix (optically petive materials).

the voractive indices and the polaritation states of the two eigenmodes for a siven k are uniquely determined from the Maxwell's equations.

We will consider flive cases in their respective Nincipal coordinate frames

Uniaxiel materiels.

Optical active /magnetic medi

$$\begin{array}{c|c}
P_{x} \\
\hline
P_{y} \\
\hline
P_{t}
\end{array} =
\begin{array}{c|c}
F_{0} & O & O \\
\hline
O & G_{0} & G_{x}
\end{array}$$

$$\begin{array}{c|c}
F_{y} \\
\hline
O & O & F_{e} \\
\hline
F_{t}
\end{array}$$

$$\begin{array}{c|c}
F_{t} \\
\hline
F_{t}
\end{array}$$

$$\begin{array}{c|c}
F_{t} \\
\hline
F_{t}
\end{array}$$

$$\begin{vmatrix}
D_{x} \\
D_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y} \\
C & \epsilon_{0} & \epsilon_{y} \\
C & \epsilon_{0} & \epsilon_{z}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y} \\
C & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{0} & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda & \epsilon_{y}$$

$$\begin{vmatrix}
A_{y} \\
A_{y}
\end{vmatrix} = -i\lambda$$

What are are soing to get in the end? Uniaxial materials let k make of from the positive z-axis. Then k and z-axis define a plane, x-z plane One eigenmode, the ordinary ray (o-ray), is linearly pularitation with the electric field E. perpendicular to this plane, and the repractive index $N_o = \overline{f} \in \mathcal{E}_o$, $\overline{\mathcal{E}}_o = \widehat{g} \in \mathcal{E}_o (2\pi u_o \widehat{k} \cdot \vec{r} - \omega t)$ being independent of θ The oflier eigenmode, the extraordinary pay (e.vay). is also linearly polarited with the electric field Ee in the plane, and the repraetive index Melb) siven by $\frac{1}{N_e(\theta)} = \frac{\alpha \hat{\theta}}{\xi_0} + \frac{\sin \theta}{\xi_e}$ i.e., dependent en & Fe = x (Ne(b) sin b - Ee) + 2 Ne (b) and sind up to a constant. Note É R to

Optically active magnetic materials Let R = [sind, 0, cn0) make & from the positive z-axis. Our eigenmode is "left-circulating" elliptically polarized with a refractive index $N_L(\theta) \simeq \int_{\xi_0-d} dn\theta \qquad (d << \xi_0)$ $E_{L}(\theta) = \hat{x} \text{ and } (f_{0} \text{ con} \theta + d \text{ sin} \theta) + \hat{y} i (f_{0} \text{ con} \theta + d \text{ sin} \theta)$ + 2 (-) (to-dard) sind cul the other eigenwords is "vight-circulating" elliptically polarized with a repraetive index MR = Jto+Lend (Luco) Ex(+) = x and (60 and - 25 ind) - 9 i (60 and - 25 ind) f 2 (-) (No+ xano). sin 8 con 8.

For magnetic meteriels, when M changes sign, & does as well! Special cases &=c

When the Ciglet fravels along the direction
of the magnetitation (2-axis) or the help,

$$V_R = \int \xi_0 + \lambda$$

$$\tilde{\xi}_R = \xi_0(\hat{x}, \hat{y})(-i)$$

Formal proof for the case of aniaxiel materials $\vec{E}(\vec{r},t) = (\hat{x}E_x + \hat{y}E_y + \hat{z}E_z)e^{i\vec{k}\cdot\vec{r}-z\omega t}$ $\vec{R} = N(\theta) \frac{2\pi}{\lambda} \left(\hat{\chi} \sin Q + \hat{z} \cos Q \right)$ Rom Ux (Ux E) = (27) E.E $\vec{\xi} \cdot \vec{E} - N(\theta) \vec{E} + N(\theta) \hat{k} (\hat{k} \cdot \vec{E}) = 0$ $\vec{E} = \hat{X} \hat{E}_x + \hat{y} \hat{E}_y + \hat{z} \hat{E}_z$ $\hat{k} = \hat{x} \sin \theta + \hat{z} \cos \theta$ \hat{X} -axis: $E_{x}(\epsilon_{o} - h^{2}(\theta)\omega^{2}\theta) + E_{t}u^{2}(\theta)\sin\theta\cos\theta = 0$ \hat{y} -axis: Ey ($\epsilon_0 - n^2(\theta)$) = ϵ_0 Z-axis: Ex M(b) sindand + Ex (Ee - M(b) sind) = 0

For a non-frivial solution for \(\varepsilon\), we require

\[
\begin{align*}
\text{for a non-frivial solution for \(\varepsilon\), we require
\[
\begin{align*}
\text{fo-u'(\varepsilon)} \(\varepsilon\) \(\varepsilon\)
\[
\begin{align*}
\text{fo-u'(\varepsilon)} \\
\text{o-u'(\varepsilon)} \\
\text{o-u'(\var

There are two solutions:

Ordinary vay
$$\vec{E}_0$$
 with $\vec{E}_0 - N_0(\theta) = 0$, $N_0(\theta) = N_0 = 1$ (indefpendent of θ) $\vec{E}_0 = \hat{q} E_0$ (as $\vec{E}_{\times} = 0$, $\vec{E}_{\tilde{q}} = 0$)

Extraordinary ray Ee With

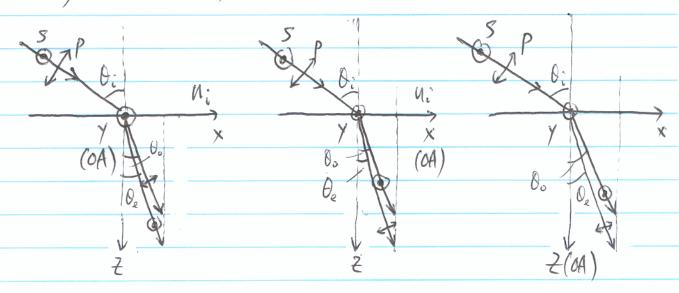
$$\frac{1}{N_e(\theta)} = \frac{\cos^2 \theta}{\epsilon_o} + \frac{\sin^2 \theta}{\epsilon_e}$$

$$\vec{E}_{e} = (--)(\hat{x}N_{e}^{2}(\theta)\sin\theta\cos\theta + \hat{t}(N_{e}(\theta)\sin\theta - \epsilon_{0}))$$

$$= (--)((N_{e}(\theta)\sin\theta - \epsilon_{e})\hat{x} + N_{e}(\theta)\cos\theta\hat{z})$$

If is wetevarthy that De is perpendicular to k,

which is perpendicular to $\hat{k} = \hat{x} \sinh + \hat{z}$ and


Direction of cenergy flow 3 = To EXB is not along the direction of phase propagation k. RX3 = HRX(EX(MRXE)) $= \frac{\mu_{oc} \hat{k} \times \left(\hat{k}(\vec{\epsilon}^2) - \vec{\epsilon}(\hat{k}.\vec{\epsilon})\right)}{\mu_{oc}}$ $= \frac{-\mu}{\mu_{oc}} \left(\hat{k} \times \vec{E} \right) \left(\hat{k} \cdot \vec{E} \right)$

This causes problem (walk-off) in non Cinear opties.

Double refraction at the surface of aniaxial

Generally it is complicated also braically if the optic axis of the motorial is neither in the plane of incidence nor perpendicular to the plane of incidence.

We only consider the cases when either OA is in or perpendicular to the plane of incidence. In these cases, 5- and p-polarited incident light will vespectively only comple to either o-ray or o-vay in the uniaxial material.

TE-) e-vay

TM -) o-vay

Nosindo= Misindo

Nesinde= Misindo

TE > 6-ray

TM -> Q-ray

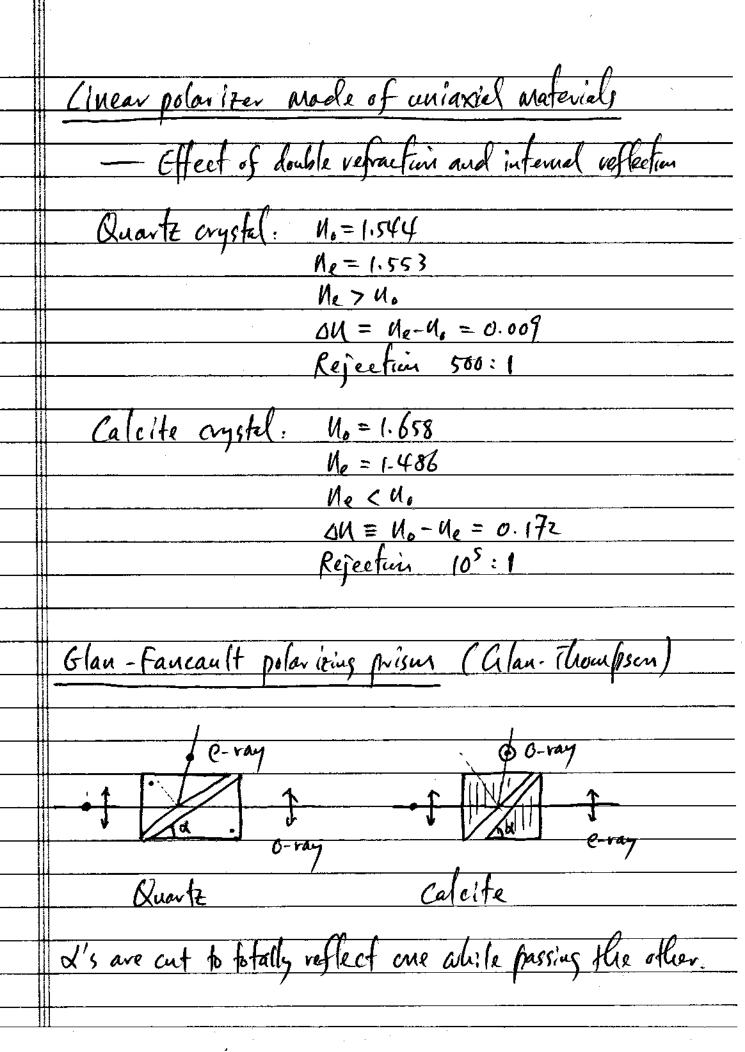
No sin Do = Vi sin Do

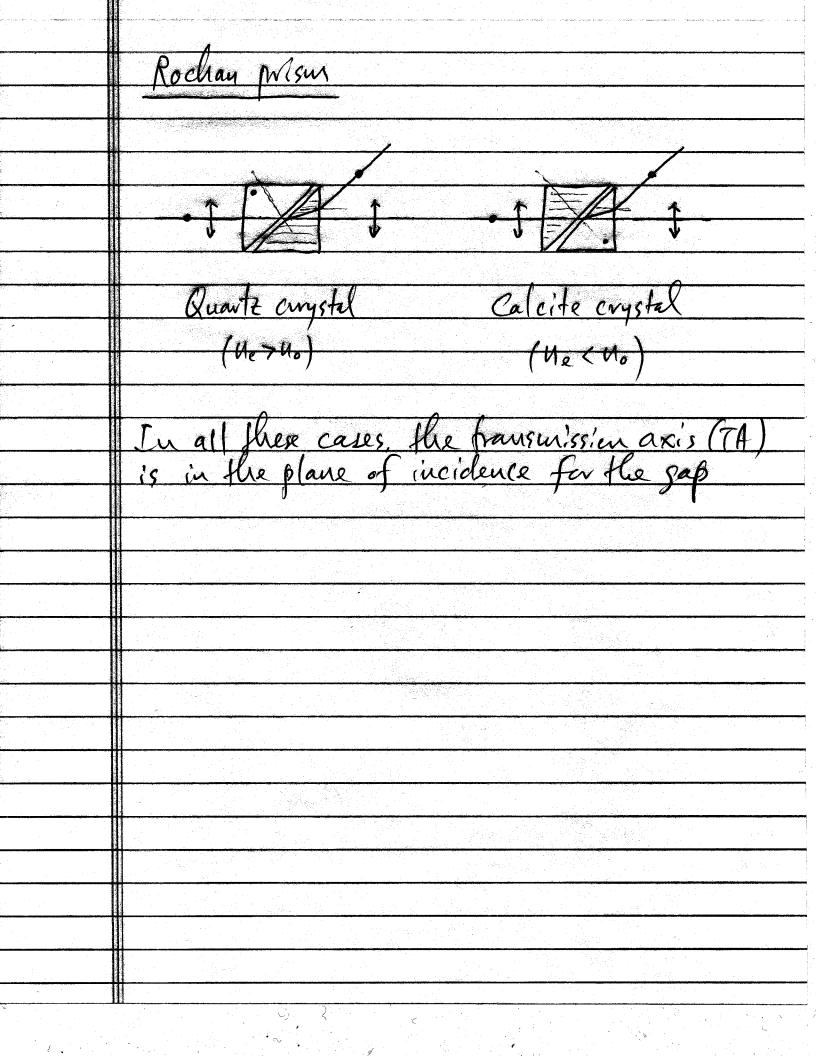
Sin De = No sin Do

No sin Do

No sin Do

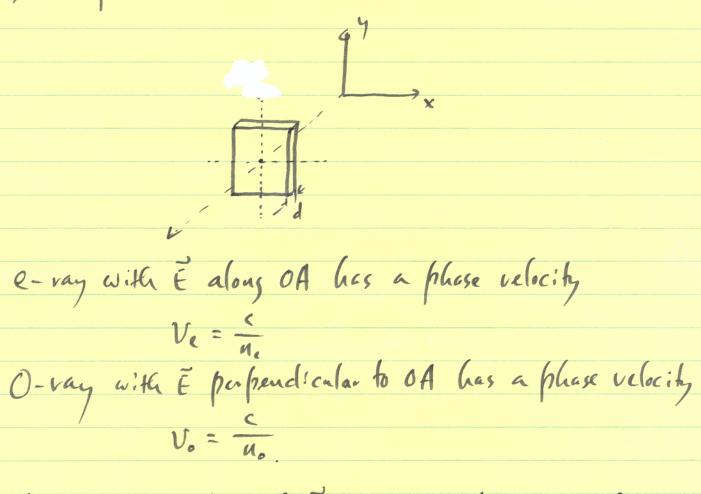
No sin Do


TE -> 0-ray


TM -> e-ray

Nosindo = U. Sindo

Sindo = Mesindo


Ne+ (he-he) sindo

7. Phase-refarding plates: (phase refarder)

Uniaxial crystal plates with offic axes in the planes of the plates.

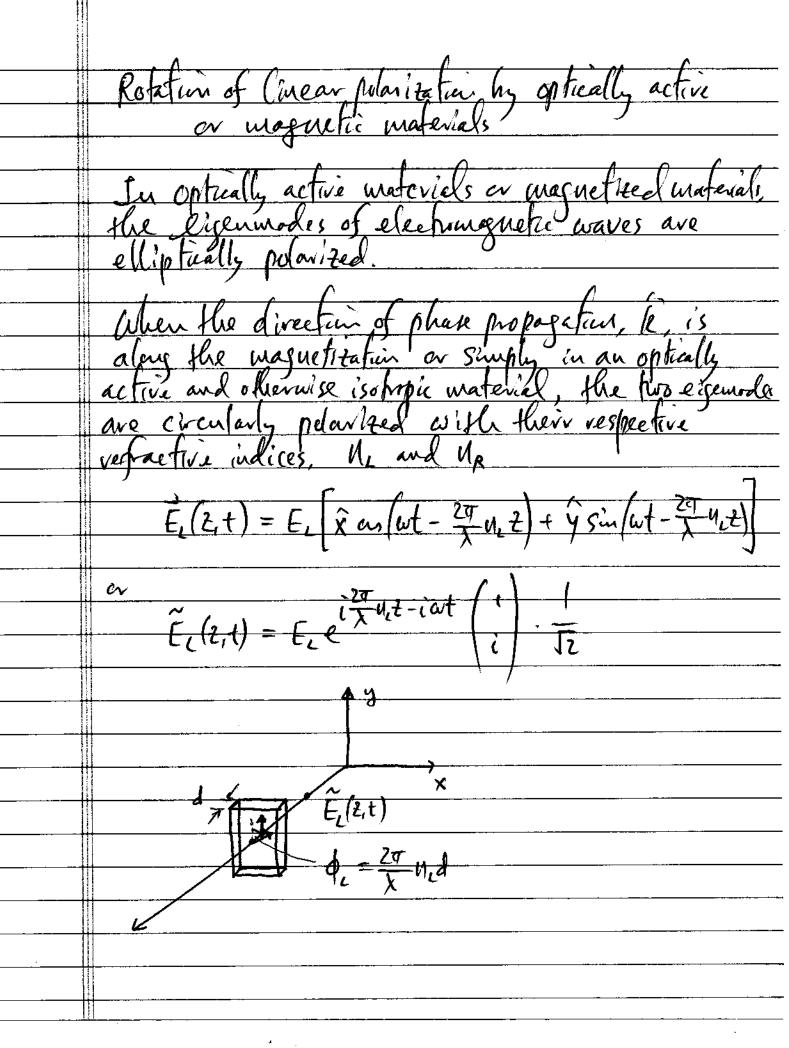
Slowaxis: direction of E with smaller V (SA) Fast axis: direction of E with larger V. (FA)

=) slowaxis hosts the vay with larger index of refraction, and thus the vay which picks up extra, positive

Let
$$\hat{x}$$
 along FA, \hat{y} along SA,

$$E_{x}(t+d) = E_{x}(t) e^{i\phi(tA)}$$

$$E_{y}(t+d) = E_{y}(t) e^{i\phi(sA)}$$


$$M = \begin{pmatrix} e^{i\phi(\epsilon A)} & o \\ o & e^{i\phi(\epsilon A)} \end{pmatrix}$$

$$M = \begin{cases} 1 & 0 & i\phi(fA) \\ i\phi(fA) & i\phi(fA) \end{cases}$$

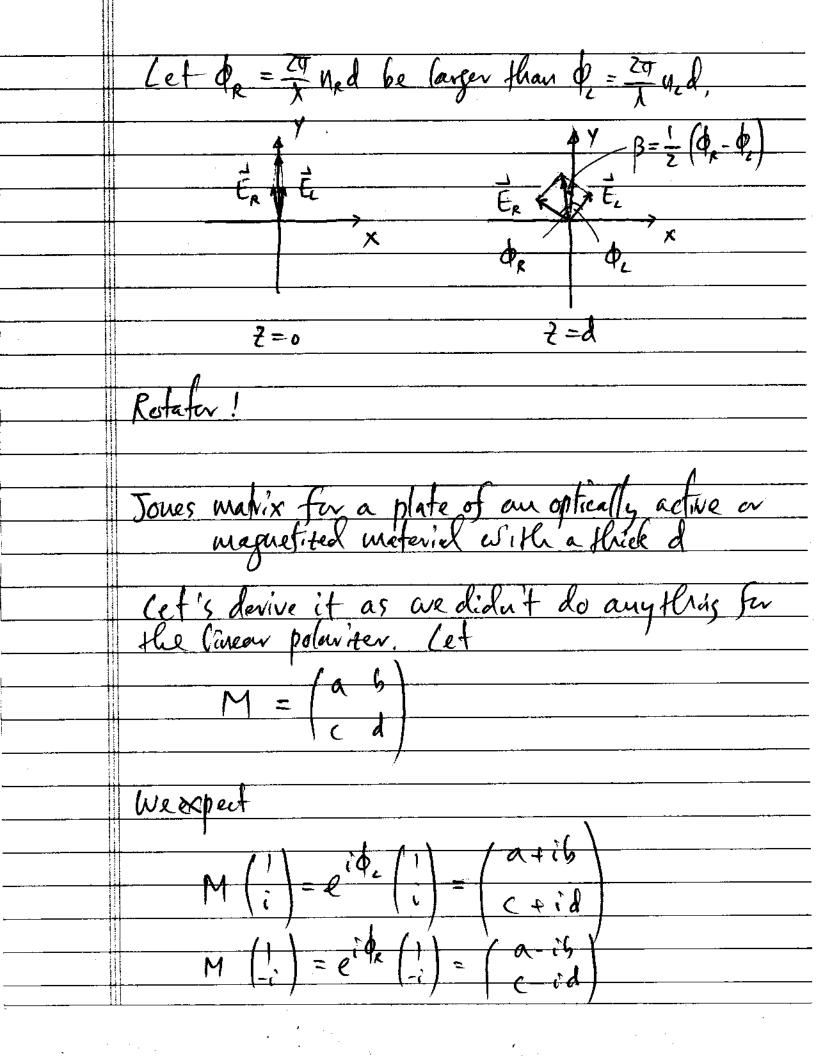
Quarter-wave plate: 1/4 - plate:

$$M = \begin{pmatrix} 1 & 0 \\ 0 & \underline{1}i \end{pmatrix}$$

Half-wave plate: Y- plate

$$\vec{E}_{R}(z,t) = \vec{E}_{R}\left(\hat{X}\alpha_{r}\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right) + \hat{Y}\sin\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right)\right)$$

$$\vec{E}_{R}(z,t) = \vec{E}_{R}\left(\hat{X}\alpha_{r}\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right) + \hat{Y}\sin\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right)$$


$$\vec{E}_{R}(z,t) = \vec{E}_{R}\left(\hat{X}\alpha_{r}\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right) + \hat{Y}\cos\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right)$$

$$\vec{E}_{R}(z,t) = \vec{E}_{R}\left(\hat{X}\alpha_{r}\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right) + \hat{Y}\cos\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right)$$

$$\vec{E}_{R}(z,t) = \vec{E}_{R}\left(\hat{X}\alpha_{r}\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right) + \hat{Y}\cos\left(\frac{2\pi}{\lambda}u_{R}z-\omega t\right)$$

$$\frac{\widetilde{e}(0)}{\widetilde{e}(0)} = \frac{\widetilde{e}(0)}{\widetilde{sin}(0)} = \frac{\widetilde{e}(0)}{\widetilde{sin}(0)} + \frac{\widetilde{e}$$

Varticularly, when
$$\theta = 90^{\circ}$$
 (as shown)

Tvickelly,

$$a = cos \beta \cdot e^{\frac{1}{2}(\theta_{1} + \theta_{2})}$$
 $b = -sin \beta \cdot e^{\frac{1}{2}(\theta_{2} + \theta_{2})}$
 $c = sin \beta \cdot e^{\frac{1}{2}(\theta_{1} + \theta_{2})}$
 $d = cos \beta \cdot e^{\frac{1}{2}(\theta_{2} + \theta_{2})}$
 $d = cos \beta \cdot e^{\frac{1}{2}(\theta_{2} + \theta_{2})}$

So, is nowing the unimperfant constant phase factor,

 $M = \begin{pmatrix} cos \beta & -sin \beta \\ sin \beta & cos \beta \end{pmatrix}$
 $S = \frac{1}{2}(\theta_{1} - \theta_{2})$
 $S = \frac{1}{2}(\theta_{1} + \theta_{2})$
 $A = \frac{1}{2}(\theta_{1} + \theta_{2})$
 $A = \frac{1}{2}(\theta_{2} + \theta_{2})$
 $A = \frac{1}{2}(\theta_{1} + \theta_{2})$
 $A = \frac{1}{2}(\theta_{2} - \theta_{2}) = \frac{1}{2}(\theta_{1} + \theta_{2})$
 $A = \frac{1}{2}(\theta_{2} - \theta_{2}) = \frac{1}{2}(\theta_{1} + \theta_{2})$

	· · · · · · · · · · · · · · · · · · ·
Exer	<u>~100 </u>
1	nartz can be left-handed or right-handed the along the optic axis, the refractive is for two circularly polarized light-compara- lifterent,
Tuniea	The almosthe costic axis the repractive
indice	is for two circularly polarized ash t company
aved	iffevent,
	Theop = STIXIO val/pm
	1760A
100	Τ
With	d= 1 cm = 10 pm
	B= 7 d (Mx- Mc) = 0.817 vadians = 1440
	MR-N_ = 6.2x10 \$ 104
	MR-ML = 6, CX10 \$ 10'
5.0	
	*
T CAMPAGE AND A	