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We show that the transmittance of light through waveguides is analogous to the 
conductance of electrons through mesoseopic wires only when a quasi-monochromatic 
light source is used. We also show that when casting the Maxwell equations into a 
Schr0dinger-type equation in an optical waveguide with a spatially varying dielectric 
function e(o~,r) (the optical analog of a mesoscopie electron conductor with disorders), a 
velocity-like, non-bermitian term in the effective Hamiltonian prevails. The latter 
distinguishes the optical case from the electron ease, in addition to the vector nature of 
electromagnetic waves. 

Quantum transport of electrons in solids has attracted 
considerable attention in the past decade, t - 6 The subject is 
closely linked to a number of most interesting problems in 
condensed matter physics such as electron localization in 
disordered solids and conductance fluctuations in 
mesoscopic conductors. The problems have been 
successfully treated with quantum transport theories of 
Landauer-type by a number of authors. 2.4.6,7 Similar 
approaches have also been applied to several analogous 
cases involving electromagnetic waves. 6.s.9.1° 

Experimentally, van Wees, 11 Wharam, ta Faist 13 and 
their coworkers recently observed quantized electron 
conductance through point contacts or electron waveguides. 
These new experiments have stimulated the research on 
bal l i s t ic  and par t ia l ly  di f fus ive  t ransport  of  
electrons.t1.14,15, t6 The optical analogy of ballistic 
transport of electrons using a monochromatic light has also 
been discussed by Housten and Beenakker. 17 The 
experimental demonstration of quantized transmittance of 
diffusive light through a narrow slit has been elegantly 
performed by Montie and coworkers. TM It is believed that 
the studies of electron transport in the mesoscopic limit 
should be benefited from a thorough study of the optical 
transmittance through waveguides for two reasons. 
Theoretically, electromagnetic waves represent simple non- 
interacting systems which are readily subject to thorough 
theoretical investigations. Experimentally, optical 
waveguides can be prepared relatively easily. 

In this communication, we shall address two issues 
regarding the optical analogy of electron transport in 
mesoseopie conductors. The first concerns with the physical 
grounds on which the optical transmittance through an 
optical waveguide is considered analogous to the electron 
conductance through a mesoscopic wire. A clarification of 
this issue is necessary because the electron conductance is 
often pictured as the response of a wire to an external applied 
field while there is no external field involved in the case of 
the optical transmittance. We then show that only the 
transmittance of a quasi-monochromatic light with a finite 
frequency bandwidth ao~ through a waveguide is exactly 
analogous to the conductance of electrons in a mesoscopic 
conductor. The second issue concerns with the difference 
between the electron conductance and the optical 
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transmittance arising from that the former is described by the 
SchrOdinger equation while the latter by Maxwell equations. 
As we will show, when casting the Maxwell equations in a 
waveguide with a spatially varying dielectric function e(o~,r) 
into a vector form of a Sehrtdinger eigenvalue equation, a 
scattering potential term, -WV.E) ,  makes the effective 
Hamiltonian non-hermi t ian .  This makes the optical 
transmittance an interesting case in its own right. 

We first consider the optical transmittance through one 
section L of a long waveguideL0 with a cross section A. Lo 
is used for the quantization along the long waveguide. The 
section L is far away from either ends of the waveguide, 
namely, L << L0. There can be dielectric impurities inside 
the section characterized by a spatially varying dielectric 
constant e(o~,r), but none outside the section throughout the 
waveguide. Such a "disordered" section can be viewed as a 
piece of  "optical mesoscopic wire". Let a set of 
monochromatic light waves at oJ0 incident at the left end of 
the "disordered" section. The sum of the totalfluxes coming 
out of the right end may be defined as the optical 
transmittance of the section, 

%,[%) = ~_~ %( %)va( %)r ~,op,/ %). 
a,b (1) 

Here, a and b denote the incident channel and the transmitted 
channel, respectively. They include the polarization labels as 
appropriate, na(a)o) is the photon numbers per unit length 
along the waveguide at ¢0o, and va(oJo) is the corresponding 
group velocity along the waveguide. Tab,optl(a)O)is the 
transmission probability from an incident channel a into an 
outgoing channel b. Eq. (1), valid for a monochromatic 
optical wave, is not yet analogous to the conductance of 
electrons through a mesoscopic wire as will be clear shortly. 
Note that ]optl(O~o) depends explicitly upon the group 
velocities o f  each open channel. This point has been 
previously overlooked by other authors. 17 If, instead, a set 
o f  quasi-monochromatic waves with a center frequency coo 
and a bandwidth Amare incident upon the section, the total 
transmittance lomt can now be shown directly analogous to 
the electron con-ductance. We assume that na(cO) does not 
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vary over the bandwidth ato such that na(tO) = na(tOo). For 
each incident channel a, one must sum over all possible kaz 
states within Ata and thus involve an integration of the one 
dimensional density of  states Da( tO) = (Lo/27r)(dkaddto) = 
(Lo/2~r)[1/v=(to)]. kaz is the wave vector component along 
the waveguide. The total transmittance is obtained by 
integrating Iopa(to) given in Eq. (1) over ato, 

tOo+Am 

a,b too 
(2) 

Na(mO) = na(O~o)Lo is the total number of  photons in the 
incident channel a. 

To see the analogy, we consider  the electron 
conductance through a mesoscopic wire sandwiched 
between two much longer and perfect conductors with the 
same cross section. Following an argument by Anderson 
and coworkers,  2 when there is no electric field applied 
across a wire, we have an equal electron flux impinging on 
both ends of the wire so that the net current is zero. To 
obtain the electron "transmittance" or the conductance, we 
need to apply a voltage AV to create an imbalance of the 
chemical potential e z W  across the mesoscopic wire. This 
leads to a population difference between two ends over an 
energy bandwidth e A V  at the Fermi level E/, Zina(E) = 
[ d n a ( E ) / d E I E = E / e A V ) .  The transmitted flux is now 
dependent upon the voltage AV, Here, na(E) is the number 
of  electrons per unit length along the wire in channel a with 
energies less than E. It is natural to define the conductance ir 
as the total transmitted flux I divided by the voltage AV or 
the bandwidth eAVIh. Clearly, we expect l ' to  have the same 
form as for lopa except for the unit e2/h, 

I ~.. na(E/+eAV)" na(E I) 
F =  A"'V = ~ AV e v = T . .  . . . . . .  ctron 

a,b 
Ey+eAV 

=± f E/ A V  ~ab " 2 Z  J fry a " eVaT b'etectr°n 
b E: 

2 

= ~ Z g c T a b , e l e c t r o n  " 
a,b (3) 

Tab electron is the transmission probability of  an electron 
wa~e at the Fermi energy E/from an incident channel a into 
an outgoing channel b. Va - (1/h)dE/dkaz is the longitudinal 
group velocity, gc is the degeneracy factor of an allowed 
energy level in the conductor and is equal to 2 at the 
equilibrium as required by Pauli's principle. In the electron 
case, the effect of  the density of states is already included 
when a finite voltage AV is applied and the equivalent 
bandwidth is given by eAV/h. 

Equations (2) and (3) are identical except for the 
quantum statistical requirements on the degeneracy factor in 
each open channel. For electromagnetic waves, the 
degeneracy factor Na(tOo) in a channel a is not limited. Eq. 
(3) is known as the Landauer formula for the electron 
conductance through mesoscopic wires and is now extended 
to electromagnetic waves in wave guides. To evaluate the 
transmission probability Tab, we generally resort to the 
Schrtdinger equation for electrons and Maxwell equations 
for optical waves :  

Now we are led to the second issue. The optical 
analogy can be further elucidated by mapping Maxwell 
equations onto a vector form SchrOdinger equation. We 

rewrite Maxwell equations in a wave guide section with a 
spatially varying dielectric funct ion e(to, r) in the following 
way. We use the electric field E as the "equivalent wave 
function", because in the region away from the "disordered" 
section, the photon density is simply proportional to IEI 2 and 
the photon fiux is given by the product of the group velocity 
v and IEI 2. By introducing e(to) as the asymptotic value of  
e(oJ, r) away from the "disordered" section and &'(r) ~ e(to) - 
e(to, r), we can define a second-rank tensor, Vii(r), as the 
effective dielectric scattering potential, 

~ ln le( to ,  r ) l  31hie(to, r)1 3  r)d 8 %dx, % dx, 
Vq(r) - 2 ,J 

C (4) 

Now by using an effective Hamiltonian Hq = - ~OA + Vijfr), 
and an effective eigenvalue W = e( to)~/c  2, we may cast 
Maxwell  equations in a matrix form analogous to the 
SchrOdinger equation, 

[ i . e - '=  w ~  . 
(5) 

To calculate the transmission probability Tab opa(too), we 
generally apply the quantum mechanical" theory of  
scat ter ing.  4,t9 In the absence of  dielectric scattering 
potential, Vii(r) = 0, we find Tab.optl = tab, and from Eq. 
(2), Iopa = (doY2~r)ZaNa(wO). The  sum is over all the open 
(prop~igating) channels in the waveguide for a fixed incident 
photon energy hal0. If one changes the cross section A of  
the waveguide or equivalently the photon energy h~o, more 
or fewer channels will be open at discrete intervals of  A/~. 2 
(~. = 2~c/too is the vacuum wavelength of the incident light), 
and one should observe a step-like transmittance variation as 
a function of  the photon energy:  l, t7 When Vii(r) ~ 0, it is 
necessary to apply the general scattering theory. 4,]9 

We now discuss the dif ference between the 
propagation of an electron wave and an electromagnetic 
wave. As one may have noticed, the effective Hamiltonian 
Hii for an electromagnetic wave is not Hermitian as it 
contains p u r e  derivatives, cg/Oxi, acting upon the "wave 
function". This has important consequences which 
distinguish the optical transmittance from the electron 
conductance. First, the micro-reversibility of the transition 
matrix T is now broken so that Tab,optl(tOO) ~ Tba.optl(tOO) 
even though the effective Hamiltonian has the time-reversal 
symmetry. This should be observable in an optical 
experiment. Secondly, one may no longer apply the fully 
retarded Green's function approach which requires t h e  
H a m i h o n i a n  to be Hermi t ian .  4 Finally,  spatial 
eigenfunctions belonging to different eigenvalues are no 
longer necessarily orthogonal to each other. These 
consequences make the optical transmittance a rather 
interesting case in its own right. 

There are, however, two interesting and important 
limiting cases which are worthy of consideration in more 
details. One limit is when the variation of  the dielectric 
function e(to, r) is small over the scale of the wavelength so 
that we can neglect the derivative terms in the scattering 
potential in Eq. (4), then Vij(r ) =l&(r)a,'2/c218ij. It is easy 
to see that the effect ive Hamiltonian Hi i  becomes  
approximately Hermitian again. By extending to the vector 
case for electromagnetic waves, the retarded Green's 
function approach and the scattering theory as described by 
Fisher and Lee can now be extended to the calculation of  the 
optical transmittance. 4,20 For example, i f  we define the 
unperturbed electric field E(ta, p;a)exp(ikazz) of an open 
channel a so that fdpdz/E(to,p;a)/2 = 1 with the integration 
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over the volume of the entire waveguide AL0, and define the 
matrix elements of the Green's function G(+)(W ) = (W + i71 - 
H) "l coupling an incoming channel a to an outgoing channel 
b as in Ref. 4, 

valuable discussions with Professor Shechao Feng. 
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G~)(z,z ') = WLo , (+) , , "T f f  d~p'~(o~,p;b)G (r,r )E(co, p ;a), 
~rc ( A ) 

the optical transmittance can be expressed as ,t 

(6) 

,+) , 2 
I - VoV  optl -- " ~  

a.b (7) 

The second limiting case is when the variaiion of 
e(oJ, r) is not small over the scale of the wavelength and yet 
the strength of the scattering potential Vii(r) is weak 
compared to the difference between the squares of the 
transverse wave vectors of two neighboring propagating 
channels. In this case, Tab.omt can be calculated using the 
Born approximation. By defining the matrix element of the 
scattering potential Vi~r) between the incident channel a and 
the reflection channel-b 

V / L ° r  = ~ J d r  E((o,p;b)V(r)E(co, p;a) expli(kaz+kbz)Z], 

(AZ0) (8) 

we find the reflection coefficient r,,b.~a = V~bC2/(vavb)mr~, 
Tab,~a = 1 - ~,b[rab,omd2,15,16 and finally 

(9) a b 

A number of observations from rab~a and Eq. (9) are 
in order: (i) It is easily seen that whenever a new channel a '  
is just open, the group velocity Va" is small. Consequently, 
the corresponding rab.oea is large. Then, one should 
observe a large reduction m loea near such an opening. (ii) 
If the scattering potential is point-like, the transmittanees of 
all incidence channels will be reduced by an enhanced 
scattering into the backward direction of the new channel a '  
since a &function can couple any two waves with arbitrary 
difference in wave vector. When the number of the 
incidence channels is large, a much larger dip of the total 
transmittance should be expected. This was qualitatively 
observed by Faist and coworkers in the case of electron 
transport and later explained by Wang and Feng. 13,16 
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