Instructor: Xiangdong Zhu
Rm. 237, Physics/Geology Building
(530) 752-4689; xdzhu@physics.ucdavis.edu
http://www.physics.ucdavis.edu/xdzhu/

Lecture: 2:10 PM – 3:00 PM, MWF, 140 Physics/Geology Building

Office hours: Drop-in, Rm. 237 Physics/Geology Building

Lecture notes (136 pages, on www.physics.ucdavis.edu/xdzhu)
OSLO Software Reference Version 6.1

Homework: There are 9 assignments. Each will be posted on Monday on my Web page: www.physics.ucdavis.edu/xdzhu/course2006_Spring.html. The assignment is due on the following Monday at the time of the lecture. The assignments are graded based on the number of problems that are attempted. The solution to an assignment will be posted on the Web page after the assignment is collected. No late homework will be collected.

Midterm Exam: 2:10 PM – 3:00 PM, Friday, May 5, 2006
Final Exam: 10:30 AM – 12:30 PM, Friday, June 9, 2006

Grading rules:
Homework: 25%
Midterm exam: 30%
Final exam: 45%

Introduction of Modern Optics, Grant R. Fowles (Dover Publications)

Prerequisites: Physics 9 series and Math 21 sequence, preferably Physics 110 series

108 Lab: Lab begins on 4/17/06 (the third week of the Instruction)
Section#1: 3:10 – 5:30 PM, Mondays, 156A Roessler Hall
Section#2: 3:10 – 5:30 PM, Wednesdays, 156A Roessler Hall

[1] Measurement of light mean-free path in highly scattering media

T.A.: Peter Quinliven
SCHEDULE:

I. Geometric Optics:
 i. Snell's law of refraction and reflection
 ii. Refraction and reflection at spherical surfaces and Paraxial approximation
 Thin lens equation
 Mirror equation
 Microscope and Telescope
 Beyond paraxial approximation: aberrations correction with lens systems
 Ray tracing with OSLO Premium 6.1 software
 iii. (2 × 2)-Matrix description for paraxial rays
 Thick lens
 Lens systems

II. Wave Optics:
 i. Two-beam interference
 Young's fringes
 Stokes relations
 Single reflections from two parallel surfaces
 Michelson interferometer and Mach-Zender interferometer
 ii. Multiple reflections from two parallel surfaces
 Fabry-Perot Interferometer
 iii. Diffraction
 Fraunhofer diffraction from a single slit
 Fraunhofer diffraction from multiple slits
 Reflection gratings and blaze angles

III. Maxwell's Theory of Optics
 i. Maxwell's equations and boundary conditions
 ii. Snell's law of reflection and refraction (revisit)
 iii. Fresnel equations of reflection and transmission
 iv. Brewster angle
 v. Critical angle and evanescence wave
 v. Multilayer thin film optics: (2 × 2)-Matrix description

IV. Optical Dielectric Constant
 i. Induced dipole moments of electrons
 ii. Optical constants of metals, semiconductors, and insulators
 iii. Optical constants in anisotropic optical media (liquid crystals)
 iv. Optical constant in magnetic/optically active materials

V. Polarized Light and its propagation in anisotropic Media
 i. Polarization of light
 ii. Jones vector representation of polarization
 iii. Jones (2 × 2)-Matrix representation of polarizing optical components
 iv. Light propagation in uniaxial crystals and double refraction
 v. Production of polarized light with polarizing optical components
 v. Optical activity
IMPORTANT DATES:

April 10: HW#1
April 17: HW#2
April 24: HW#3
May 1: HW#4

May 5: Midterm Exam, 2:10 PM – 3:00 PM, Friday

May 8: HW#5
May 15: HW#6
May 22: HW#7
May 29: HW#8

June 7: HW#9

June 9: Final Exam, 10:30 AM – 12:30 PM, Friday