Physics 108 Modern Optics (Spring Quarter, 2012)

Instructor: Xiangdong Zhu
Rm. 237, Physics Building
(530) 752-4689; xdzhu@physics.ucdavis.edu
http://www.physics.ucdavis.edu/xdzhu/

Lecture: 2:10 PM – 3:00 PM, MWF, 140 Physics Building

Office hours: Drop-in, Rm. 237 Physics/Geology Building

Lecture notes on www.physics.ucdavis.edu/xdzhu

Homework: There are 9 assignments. Each will be posted on Monday on my Web page: www.physics.ucdavis.edu/xdzhu/course2012_Spring.html. The assignment is due on the following Monday at the time of the lecture. The assignments are graded based on the number of problems that are attempted. The solution to an assignment will be posted on the Web page after the assignment is collected.

Midterm Exam: 2:10 PM – 3 PM, Monday, April 30, 2012

Final Exam: 8:00 AM – 10 AM, Tuesday, June 12, 2012

Grading rules: Homework: 25%
Midterm exam: 30%
Final exam: 45%

Introduction of Modern Optics, Grant R. Fowles (Dover Publications)

Prerequisites: Physics 9 series and Math 21 sequence, preferably Physics 110 series

108 Lab: Lab begins on 4/16/2012 (the third week of Instruction)
3:10 – 5:30 PM, Mondays, 156A Roessler Hall

[1] Measurement of light mean-free path in highly scattering media

T.A.: Galina Malovichko
SCHEDULE:

I. Geometric Optics:
 i. Snell's law of refraction and reflection
 ii. Refraction and reflection at spherical surfaces and Paraxial approximation
 Thin lens equation
 Mirror equation
 Microscope and Telescope
 Beyond paraxial approximation: correction with lens systems
 iii. 2×2-Matrix description for paraxial rays
 Thick lens
 Lens systems

II. Wave Optics:
 i. Two-beam interference
 Young’s fringes
 Stokes relations
 Single reflections from two parallel surfaces
 Michelson interferometer and Mach-Zender interferometer
 ii. Multiple reflections from two parallel surfaces
 Fabry-Perot Interferometer
 iii. Diffraction
 Fraunhofer diffraction from a single slit
 Fraunhofer diffraction from multiple slits
 Reflection gratings and blaze angles (optional)

III. Maxwell's Theory of Optics
 i. Maxwell's equations and boundary conditions
 ii. Snell's law of reflection and refraction (revisit)
 iii. Fresnel equations of reflection and transmission
 iii. Brewster angle
 iv. Critical angle and evanescence wave

IV. Optical Dielectric Constant
 i. Induced dipole moments of electrons
 ii. Optical constants of metals, semiconductors, and insulators
 iii. Optical constants in anisotropic optical media (liquid crystals)
 iv. Optical constant in magnetic/optically active materials

V. Polarized Light and its propagation in anisotropic Media
 i. Polarization of light
 ii. Jones vector representation of polarization
 iii. Jones (2×2)-Matrix representation of polarizing optical components
 ii. Light propagation in uniaxial crystals and double refraction
 iii. Production of polarized light with polarizing optical components
 iv. Optical activity