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 28.2. IDENTIFY: A moving charge creates a magnetic field as well as an electric field. 

SET UP: The magnetic field caused by a moving charge is 0
2

sin
4

qvB
r

µ φ
π

= , and its electric field is 2
0

1
4

eE
rπ

=
P

 

since q = e. 
EXECUTE: Substitute the appropriate numbers into the above equations. 

7 19 6
0

2 11 2

sin 4 10  T m/A (1.60 10 C)(2.2 10 m/s)sin90 
4 4 (5.3 10 m)

qvB
r

µ φ π
π π

− −

−

× ⋅ × × °
= =

×
 = 13 T, out of the page. 

9 2 2 19
11

2 11 2
0

1 (9.00 10 燦 m /C )(1.60 10 燙) 5.1 10 燦/C,
4 (5.3 10 爉)

eE
rπ

−

−

× ⋅ ×
= = = ×

×P
 toward the electron. 

EVALUATE: There are enormous fields within the atom! 
 28.8. IDENTIFY: Both moving charges create magnetic fields, and the net field is the vector sum of the two. The 

magnetic force on a moving charge is mag sinF qvB φ=  and the electrical force obeys Coulomb’s law. 

SET UP: The magnetic field due to a moving charge is 0
2

sin
4

qvB
r

µ φ
π

= . 

EXECUTE: (a) Both fields are into the page, so their magnitudes add, giving 

 B = Be + Bp = 0
2 2

e p

sin90
4

ev ev
r r

µ
π
 

+ °  
 

 

 B = ( )( )190
9 2 9 2

1 11.60 10 燙 845,000 m/s
4 (5.00 10 爉) (4.00 10 爉)
µ
π

−
− −

 
× + × × 

 

 B = 1.39 × 10–3 T = 1.39 mT, into the page. 

(b) Using 0
2

sin
4

qvB
r

µ φ
π

= , where r = 41 nm and φ = 180° − arctan(5/4) = 128.7°, we get 

7 19
4

9 2

4 10  T m/A (1.6 10 燙)(845,000 m/s)sin128.7? .58 10  T,
4 ( 41 10 爉)

B π
π

− −
−

−

× ⋅ × °
= = ×

×
 into the page. 

(c) 19 4 17
mag sin90 (1.60 10  C)(845,000 m/s)(2.58 10  T) 3.48 10  N,F qvB − − −= ° = × × = ×  in the +x direction. 

9 2 2 19 2
2 2 12

elec 0 9 2

(9.00 10 燦 m /C )(1.60 10 燙)(1/ 4 ) / 5.62 10  N,
( 41 10 爉)

F e rπ
−

−
−

× ⋅ ×
= = = ×

×
P  at 51.3° below the +x-axis measured 

clockwise. 
EVALUATE: The electric force is much stronger than the magnetic force. 

28.23. IDENTIFY: The net magnetic field at the center of the square is the vector sum of the fields due to each wire. 

SET UP:  For each wire, 0

2
IB
r

µ
π

=  and the direction of B
r

is given by the right-hand rule that is illustrated in 

Figure 28.6 in the textbook. 
EXECUTE: (a) and (b) B = 0 since the magnetic fields due to currents at opposite corners of the square cancel. 
(c) The fields due to each wire are sketched in Figure 28.23. 

0cos45 cos45 cos45 cos 45 4 cos45 4 cos45
2a b c d a
µ IB B B B B B
πr

 = ° + ° + ° + ° = ° = ° 
 

. 

2 2(10 cm) (10 cm) 10 2 cm 0.10 2 mr = + = = , so 
7

4(4 10 T m A) (100 A)4 cos 45 4.0 10 T, to the left.
2 (0.10 2 m)

πB
π

−
−× ⋅

= ° = ×  

EVALUATE: In part (c), if all four currents are reversed in direction, the net field at the center of the square would 
be to the right. 
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Figure 28.23 

28.30. IDENTIFY: The magnetic field at the center of a circular loop is 0

2
IB

R
µ

= . By symmetry each segment of the loop 

that has length l∆ contributes equally to the field, so the field at the center of a semicircle is 1
2 that of a full loop. 

SET UP: Since the straight sections produce no field at P, the field at P is 0

4
IB

R
µ

= . 

EXECUTE: 0

4
IB

R
µ

= . The direction of B
r

is given by the right-hand rule: B
r

is directed into the page. 

EVALUATE: For a quarter-circle section of wire the magnetic field at its center of curvature is 0

8
IB

R
µ

= . 

28.31. IDENTIFY: Calculate the magnetic field vector produced by each wire and add these fields to get the total field. 
SET UP: First consider the field at P produced by the current 1I  in the upper semicircle of wire. See Figure 28.31a. 

 

Consider the three parts of this wire 
a: long straight section, 
b: semicircle 
c: long, straight section 

Figure 28.31a  

Apply the Biot-Savart law 0 0
2 3

ˆ
4 4

Id Idd
r r

µ µ
π π

r r rr l r l rB = =× ×  to each piece. 

EXECUTE: part a See Figure 28.31b. 

 

0,dl r =
r r
×  

so 0dB =  

Figure 28.31b  
The same is true for all the infinitesimal segments that make up this piece of the wire, so B = 0 for this piece. 
part c See Figure 28.31c. 

 

0,dl r =
r r
×  

so 0 and 0dB B= =  for this piece. 

Figure 28.31c  
part b See Figure 28.31d. 

 

dl r
r r
×  is directed into the paper for all infinitesimal 

segments that make up this semicircular piece, so B
r

 
is directed into the paper and B dB= ∫  (the vector sum 

of the dB
r

 is obtained by adding their magnitudes 
since they are in the same direction). 

Figure 28.31d  

sin .d r dl θ=l r
r r
×  The angle θ  between and  is 90  and ,d r R° =l r

r r  the radius of the semicircle. Thus d Rdl=l r
r r
×  

0 0 1 0 1
3 3 24 4 4

I d I R IdB dl dl
r R R

µ µ µ
π π π

 = = =  
 

l r
r r
×
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0 1 0 1 0 1
2 2 ( )

4 4 4
I I IB dB dl R
R R R

µ µ µπ
π π

   = = = =   
   ∫ ∫  

(We used that dl∫  is equal to ,Rπ  the length of wire in the semicircle.) We have shown that the two straight 

sections make zero contribution to ,B
r

 so 1 0 1 / 4B I Rµ=  and is directed into the page.  

 

For current in the direction shown in 
Figure 28.31e, a similar analysis gives 

2 0 2 / 4 ,B I Rµ=  out of the paper 

Figure 28.31e  

1 2 and B B
r r

 are in opposite directions, so the magnitude of the net field at P is 0 1 2
1 2 .

4
I I

B B B
R

µ −
= − =  

EVALUATE: When 1 2,  0.I I B= =  
28.56. IDENTIFY: The net magnetic field is the vector sum of the fields due to each wire. 

SET UP: 0

2
IB
r

µ
π

= . The direction of B
r

is given by the right-hand rule. 

EXECUTE: (a) The currents are the same so points where the two fields are equal in magnitude are equidistant 
from the two wires. The net field is zero along the dashed line shown in Figure 28.56a. 
(b) For the magnitudes of the two fields to be the same at a point, the point must be 3 times closer to the wire with 
the smaller current. The net field is zero along the dashed line shown in Figure 28.56b. 
(c) As in (a), the points are equidistant from both wires. The net field is zero along the dashed line shown in 
Figure 28.56c. 
EVALUATE: The lines of zero net field consist of points at which the fields of the two wires have opposite 
directions and equal magnitudes. 

   
Figure 28.56 

28.66. IDENTIFY: Apply 0
2

ˆ
4
µ Idd
π r

×l rB =
r

r
. 

SET UP: The two straight segments produce zero field at P. The field at the center of a circular loop of radius R is 
0

2
IB

R
µ

= , so the field at the center of curvature of a semicircular loop is 0

4
IB

R
µ

= . 

EXECUTE: The semicircular loop of radius a produces field out of the page at P and the semicircular loop of 

radius b produces field into the page. Therefore, 0 01 1 1 1
2 2 4a b

µ I I aB B B
a b a b

µ     = − = − = −     
     

, out of page. 

EVALUATE: If a b= , 0B = . 

28.69. IDENTIFY: Apply 0
2

ˆ
4
µ Idd
π r

×l rB =
r

r
. 

SET UP: The contribution from the straight segments is zero since 0.d × =l r
rr

 The magnetic field from the curved 
wire is just one quarter of a full loop. 

EXECUTE: 0 01
4 2 8

µ I µ IB
R R

 = = 
 

and is directed out of the page. 

EVALUATE: It is very simple to calculate B at point P but it would be much more difficult to calculate B at other 
points. 

28.70. IDENTIFY: Apply 0
2

ˆ
4
µ Idd
π r

×l rB =
r

r
. 
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SET UP: The horizontal wire yields zero magnetic field since 0.d × =l r
r r  The vertical current provides the 

magnetic field of half of an infinite wire. (The contributions from all infinitesimal pieces of the wire point in the 
same direction, so there is no vector addition or components to worry about.) 

EXECUTE: 0 01
2 2 4

µ I µ IB
πR πR

 = = 
 

 and is directed out of the page. 

EVALUATE: In the equation preceding Eq.(28.8) the limits on the integration are 0 to a rather than a−  to a and 
this introduces a factor of 1

2  into the expression for B. 
29.21. IDENTIFY: A conductor moving in a magnetic field may have a potential difference induced across it, depending 

on how it is moving. 
SET UP: The induced emf is E = vBL sin φ, where φ is the angle between the velocity and the magnetic field.  
EXECUTE: (a) E = vBL sin φ = (5.00 m/s)(0.450 T)(0.300 m)(sin 90°) = 0.675 V 
(b) The positive charges are moved to end b, so b is at the higher potential. 
(c) E = V/L = (0.675 V)/(0.300 m) = 2.25 V/m. The direction of E

r
is from, b to a.  

(d) The positive charge are pushed to b, so b has an excess of positive charge. 
(e) (i) If the rod has no appreciable thickness, L = 0, so the emf is zero. (ii) The emf is zero because no magnetic 
force acts on the charges in the rod since it moves parallel to the magnetic field. 
EVALUATE: The motional emf is large enough to have noticeable effects in some cases. 

29.25. IDENTIFY and SET UP: .vBL=E  Use Lenz's law to determine the direction of the induced current. The force extF  
required to maintain constant speed is equal and opposite to the force IF  that the magnetic field exerts on the rod 
because of the current in the rod. 
EXECUTE: (a) (7.50 m/s)(0.800 T)(0.500 m) 3.00 VvBL= = =E  
(b) B

r
is into the page. The flux increases as the bar moves to the right, so the magnetic field of the induced current 

is out of the page inside the circuit. To produce magnetic field in this direction the induced current must be 
counterclockwise, so from b to a in the rod. 

(c) 3.00 V 2.00 A.
1.50 

I
R

= = =
Ω

E  sin (2.00 A)(0.500 m)(0.800 T)sin90 0.800 NIF ILB φ= = =° . IF
r

 is to the left. To 

keep the bar moving to the right at constant speed an external force with magnitude ext 0.800 NF =  and directed to 
the right must be applied to the bar. 
(d) The rate at which work is done by the force extF is ext (0.800 N)(7.50 m/s) 6.00 W.F v = =  The rate at which 
thermal energy is developed in the circuit is 2 (2.00 A)(1.50 ) 6.00 W.I R = Ω =  These two rates are equal, as is 
required by conservation of energy. 
EVALUATE: The force on the rod due to the induced current is directed to oppose the motion of the rod. This 
agrees with Lenz’s law. 

29.26. IDENTIFY: Use Faraday’s law to calculate the induced emf. Ohm’s law applied to the loop gives I. Use 
Eq.(27.19) to calculate the force exerted on each side of the loop. 
SET UP: The loop before it starts to enter the magnetic field region is sketched in Figure 29.26a. 

 

EXECUTE: For 3 /2 or 3 /2x L x L< − >  
the loop is completely outside the field 

region. 0,  and 0.B
B

d
dt
Φ

Φ = =  

Figure 29.26a  
Thus 0=E  and I = 0, so there is no force from the magnetic field and the external force F necessary to maintain 
constant velocity is zero. 
SET UP: The loop when it is completely inside the field region is sketched in Figure 29.26b. 

 

EXECUTE: For /2 /2L x L− < <  
the loop is completely inside the 
field region and 2.B BLΦ =  

Figure 29.26b  

But 0 so 0 and 0.Bd I
dt
Φ

= = =E  There is no force IF = l B
rr r
×  from the magnetic field and the external force F 

necessary to maintain constant velocity is zero. 
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SET UP: The loop as it enters the magnetic field region is sketched in Figure 29.26c. 

 

EXECUTE: For 3 /2 /2L x L− < < −  
the loop is entering the field region. 
Let x′  be the length of the loop 
that is within the field. 

Figure 29.26c  

Then  and .B
B

dBLx Blv
dt
Φ′Φ = =  The magnitude of the induced emf is Bd BLv

dt
Φ

= =E  and the induced 

current is .BLvI
R R

= =
E

 Direction of I: Let A
r

 be directed into the plane of the figure. Then BΦ  is positive. The 

flux is positive and increasing in magnitude, so Bd
dt
Φ  is positive. Then by Faraday’s law E  is negative, and with 

our choice for direction of A
r

 a negative E  is counterclockwise. The current induced in the loop is 
counterclockwise. 
SET UP: The induced current and magnetic force on the loop are shown in Figure 29.26d, for the situation where 
the loop is entering the field. 

 

EXECUTE: I I=F l B
rr r
×  gives that the 

force IF
r

 exerted on the loop by the 
magnetic field is to the left and has 

magnitude 
2 2

.I
BLv B L vF ILB LB

R R
 = = = 
 

 

Figure 29.26d  

The external force F
r

 needed to move the loop at constant speed is equal in magnitude and opposite in direction to 

IF
r

 so is to the right and has this same magnitude. 
SET UP: The loop as it leaves the magnetic field region is sketched in Figure 29.26e. 

 

EXECUTE: For /2 3 /2L x L< <  
the loop is leaving the field 
region. Let x′  be the length of 
the loop that is outside the field.  

Figure 29.26e  

Then ( ) and .B
B

dBL L x BLv
dt
Φ′Φ = − =  The magnitude of the induced emf is Bd BLv

dt
Φ

= =E  and the induced 

current is .BLvI
R R

= =
E

 Direction of I: Again let A
r

be directed into the plane of the figure. Then BΦ  is positive 

and decreasing in magnitude, so Bd
dt
Φ  is negative. Then by Faraday’s law E  is positive, and with our choice for 

direction of A
r

 a positive E is clockwise. The current induced in the loop is clockwise. 
SET UP: The induced current and magnetic force on the loop are shown in Figure 29.26f, for the situation where 
the loop is leaving the field. 

 

EXECUTE: I I=F l B
rr r
×  gives that the 

force IF
r

 exerted on the loop by the 
magnetic field is to the left and has 

magnitude 
2 2

.I
BLv B L vF ILB LB

R R
 = = = 
 

 

Figure 29.26f  
The external force F

r
 needed to move the loop at constant speed is equal in magnitude and opposite in direction to 

IF
r

 so is to the right and has this same magnitude. 
(a) The graph of F versus x is given in Figure 29.26g. 
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Figure 29.26g 

(b) The graph of the induced current I versus x is given in Figure 29.26h. 

 
Figure 29.26h 

EVALUATE: When the loop is either totally outside or totally inside the magnetic field region the flux isn’t 
changing, there is no induced current, and no external force is needed for the loop to maintain constant speed. 
When the loop is entering the field the external force required is directed so as to pull the loop in and when the 
loop is leaving the field the external force required is directed so as to pull the loop out of the field. These 
directions agree with Lenz’s law: the force on the induced current (opposite in direction to the required external 
force) is directed so as to oppose the loop entering or leaving the field. 

29.56. IDENTIFY: Apply Newton’s 2nd law to the bar. The bar will experience a magnetic force due to the induced 
current in the loop. Use /a dv dt= to solve for v. At the terminal speed, 0a = .  
SET UP: The induced emf in the loop has a magnitude BLv . The induced emf is counterclockwise, so it opposes 
the voltage of the battery, .E  

EXECUTE: (a) The net current in the loop is .BLvI R
−= E  The acceleration of the bar is 

 sin(90 ) ( ) .ILB BLv LBFa m m mR
−= = =° E  To find ( )v t , set ( )BLv LBdv adt mR

−= = E  and solve for v  using the method 

of separation of variables: 

/ /3.1 s

0 0

2 2
(1 ) (10 m/s)(1 )

( )
v t B L t mR tdv LB dt v e e

BLv mR BL
− −= → = − = −

−∫ ∫
E

E
 

The graph of v versus t is sketched in Figure 29.56. Note that the graph of this function is similar in appearance to 
that of a charging capacitor. 
(b) Just after the switch is closed, 0v = and / 2.4 A,I R= =E  2.88 NF ILB= =  and 2/ 3.2 m/s .a F m= =  

(c) When [12 V (1.5 T)(0.8 m)(2.0 m/s)](0.8 m)(1.5 T)2.0 m/s, 2.6 m/s .
(0.90 kg)(5.0 )

v a 2−
= = =

Ω
 

(d) Note that as the speed increases, the acceleration decreases. The speed will asymptotically approach the 
terminal speed 12 V 10 m/s,(1.5 T)(0.8 m)BL = =E  which makes the acceleration zero. 

EVALUATE: The current in the circuit is counterclockwise and the magnetic force on the bar is to the right. The 
energy that appears as kinetic energy of the moving bar is supplied by the battery. 

 
Figure 29.56 
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29.65. (a) IDENTIFY: Use Faraday’s law to calculate the induced emf, Ohm’s law to calculate I, and Eq.(27.19) to 
calculate the force on the rod due to the induced current. 
SET UP: The force on the wire is shown in Figure 29.65. 

 

EXECUTE: When the wire has speed v 
the induced emf is Bva=E  and the 

induced current is / BvaI R
R

= =E  

Figure 29.65  

The induced current flows upward in the wire as shown, so the force IF = l B
rr r
×  exerted by the magnetic field on 

the induced current is to the left. F
r

 opposes the motion of the wire, as it must by Lenz’s law. The magnitude of 
the force is 2 2 / .F IaB B a v R= =  
(b) Apply m∑F a

r r
=  to the wire. Take +x to be toward the right and let the origin be at the location of the wire at 

t = 0, so 0 0.x =  

 says x x xF ma F ma= − =∑  
2 2

x
F B a va
m mR

= − = −  

Use this expression to solve for v(t): 
2 2 2 2

 and x
dv B a v dv B aa dt
dt mR v mR

= = − = −  

0

2 2

0

v t

v

dv B a dt
v mR
′

′= −
′∫ ∫  

2 2

0ln( )  ln( ) B a tv v
mR

− = −  

2 2
2 2

/
0

0

ln  and B a t mRv B a t v v e
v mR

− 
= − = 

 
 

Note: At 00,   and 0 when t v v v t= = → →∞  
Now solve for x(t): 

2 2 2 2/ /
0 0 so B a t mR B a t mRdxv v e dx v e dt

dt
− −= = =  

2 2 /
00 0

x t B a t mRdx v e dt−′ ′=∫ ∫  

( )2 2 2 2/ /0
0 2 2 2 20

1
t

B a t mR B a t mRmR mRvx v e e
B a B a

′− −   = − = −   
 

Comes to rest implies v = 0. This happens when .t →∞  
0

2 2 gives .mRvt x
B a

→∞ =  Thus this is the distance the wire travels before coming to rest. 

EVALUATE: The motion of the slide wire causes an induced emf and current. The magnetic force on the induced 
current opposes the motion of the wire and eventually brings it to rest. The force and acceleration depend on v and 
are constant. If the acceleration were constant, not changing from its initial value of 2 2

0 / ,xa B a v mR= −  then the 

stopping distance would be 2 2 2
0 0/ 2 / 2 .xx v a mRv B a= − =  The actual stopping distance is twice this. 


